Evolution of infectious bronchitis virus in Taiwan: Positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity
RNA recombination has been shown to underlie the sporadic emergence of new variants of coronavirus, including the infectious bronchitis virus (IBV), a highly contagious avian pathogen. We have demonstrated that RNA recombination can give rise to a new viral population, supported by the finding that...
Gespeichert in:
Veröffentlicht in: | Veterinary microbiology 2013-03, Vol.162 (2-4), p.408-418 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA recombination has been shown to underlie the sporadic emergence of new variants of coronavirus, including the infectious bronchitis virus (IBV), a highly contagious avian pathogen. We have demonstrated that RNA recombination can give rise to a new viral population, supported by the finding that most isolated Taiwanese (TW) IBVs, similar to Chinese (CH) IBVs, exhibit a genetic rearrangement with the American (US) IBV at the 5’ end of the nucleocapsid (N) gene. Here, we further show that positive selection has occurred at two sites within the putative crossover region of the N-terminal domain (NTD) of the TW IBV N protein. Based on the crystal structure of the NTD, the stereographic positions of both predicted selected sites do not fall close to the RNA-binding groove. Surprisingly, converting either of the two residues to the amino acid present in most CH IBVs resulted in significantly reduced affinity of the N protein for the synthetic RNA repeats of the viral transcriptional regulatory sequence. These results suggest that modulating the amino acid residue at either selected site may alter the conformation of the N protein and affect the viral RNA–N interaction. This study illustrates that the N protein of the current TW IBV variant has been shaped by both RNA recombination and positive selection and that the latter may promote viral survival and fitness, potentially by increasing the RNA-binding capacity of the N protein. |
---|---|
ISSN: | 0378-1135 1873-2542 |
DOI: | 10.1016/j.vetmic.2012.10.020 |