Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent west Nile virus strain LSU-AR01

Abstract Vesicular stomatitis virus (VSV) has been extensively utilized as a viral vector system for the induction of protective immune responses against a variety of pathogens. We constructed recombinant VSVs specifying either the Indiana or Chandipura virus G glycoprotein and expressing the West N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccine 2009-02, Vol.27 (6), p.893-903
Hauptverfasser: Iyer, Arun V, Pahar, Bapi, Boudreaux, Marc J, Wakamatsu, Nobuko, Roy, Alma F, Chouljenko, Vladimir N, Baghian, Abolghasem, Apetrei, Cristian, Marx, Preston A, Kousoulas, Konstantin G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Vesicular stomatitis virus (VSV) has been extensively utilized as a viral vector system for the induction of protective immune responses against a variety of pathogens. We constructed recombinant VSVs specifying either the Indiana or Chandipura virus G glycoprotein and expressing the West Nile virus (WNV) envelope (E) glycoprotein. Mice were intranasally vaccinated using a prime (Indiana)-boost (Chandipura) immunization approach and challenged with the virulent WNV-LSU-AR01. Ninety-percent (9 of 10) of the vaccinated mice survived as compared to 10% of the mock-vaccinated mice after WNV lethal challenge. Histopathological examination of brain tissues revealed neuronal necrosis in mock-vaccinated mice but not in vaccinated mice, and vaccinated, but not mock-vaccinated mice developed a strong neutralizing antibody response against WNV. Extensive immunological analysis using polychromatic flow cytometry staining revealed that vaccinated, but not mock-vaccinated mice developed robust cellular immune responses as evidenced by up-regulation of CD4+ CD154+ IFNγ+ T cells in vaccinated, but not mock-vaccinated mice. Similarly, vaccinated mice developed robust E-glycoprotein-specific CD8+ T cell immune responses as evidenced by the presence of a high percentage of CD8+ CD62Llow IFNγ+ cells. In addition, a sizeable population of CD8+ CD69+ cells was detected indicating E-specific activation of mature T cells and CD4+ CD25+ CD127low T regulatory (T reg) cells were down-regulated. These results suggest that VSV-vectored vaccines administered intranasally can efficiently induce protective humoral and cellular immune responses against WNV infections.
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2008.11.087