A Verified Implementation of the Berlekamp–Zassenhaus Factorization Algorithm

We formally verify the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2020-04, Vol.64 (4), p.699-735
Hauptverfasser: Divasón, Jose, Joosten, Sebastiaan J. C., Thiemann, René, Yamada, Akihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formally verify the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for arbitrary univariate polynomials. The algorithm first performs factorization in the prime field GF ( p ) and then performs computations in the ring of integers modulo p k , where both p and k are determined at runtime. Since a natural modeling of these structures via dependent types is not possible in Isabelle/HOL, we formalize the whole algorithm using locales and local type definitions. Through experiments we verify that our algorithm factors polynomials of degree up to 500 within seconds.
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-019-09526-y