Inhibition of SARS-CoV replication by siRNA

Serious outbreaks of severe acute respiratory syndrome (SARS), caused by the newly discovered coronavirus SARS-CoV, occurred between late 2002 and early 2003 and there is an urgent need for effective antiviral agents. RNA interference in animals and post-transcriptional gene silencing plants is medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antiviral research 2005-01, Vol.65 (1), p.45-48
Hauptverfasser: Wu, Chang-Jer, Huang, Hui-Wen, Liu, Chiu-Yi, Hong, Cheng-Fong, Chan, Yi-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Serious outbreaks of severe acute respiratory syndrome (SARS), caused by the newly discovered coronavirus SARS-CoV, occurred between late 2002 and early 2003 and there is an urgent need for effective antiviral agents. RNA interference in animals and post-transcriptional gene silencing plants is mediated by small double-stranded RNA molecules named small interfering RNA (siRNA). Recently, siRNA-induced RNA interference(RNAi) may provide a new approach to therapy for pathogenic viruses, e.g. HIV and HCV. In this study, the silencing potential of seven synthetic siRNAs against SARS-CoV leader, TRS, 3′-UTR and Spike coding sequence have been applied to explore the possibility for prevention of SARS-CoV infection. We demonstrate that siRNAs directed against Spike sequences and the 3′-UTR can inhibit the replication of SARS-CoV in Vero-E6 cells, and holds out promise for the development of an effective antiviral agent against SARS-CoV.
ISSN:0166-3542
1872-9096
DOI:10.1016/j.antiviral.2004.09.005