N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells

Abstract Synthetic messenger RNA (mRNA) tools often use pseudouridine and 5-methyl cytidine as substitutions for uridine and cytidine to avoid the immune response and cytotoxicity induced by introducing mRNA into cells. However, the influence of base modifications on the functionality of the RNA too...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2020-04, Vol.48 (6), p.e35-e35
Hauptverfasser: Parr, Callum J C, Wada, Shunsuke, Kotake, Kenjiro, Kameda, Shigetoshi, Matsuura, Satoshi, Sakashita, Souhei, Park, Soyoung, Sugiyama, Hiroshi, Kuang, Yi, Saito, Hirohide
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Synthetic messenger RNA (mRNA) tools often use pseudouridine and 5-methyl cytidine as substitutions for uridine and cytidine to avoid the immune response and cytotoxicity induced by introducing mRNA into cells. However, the influence of base modifications on the functionality of the RNA tools is poorly understood. Here we show that synthetic mRNA switches containing N1-methylpseudouridine (m1Ψ) as a substitution of uridine substantially out-performed all other modified bases studied, exhibiting enhanced microRNA and protein sensitivity, better cell-type separation ability, and comparably low immune stimulation. We found that the observed phenomena stem from the high protein expression from m1Ψ containing mRNA and efficient translational repression in the presence of target microRNAs or proteins. In addition, synthetic gene circuits with m1Ψ significantly improve performance in cells. These findings indicate that synthetic mRNAs with m1Ψ modification have enormous potentials in the research and application of biofunctional RNA tools.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkaa070