Targeting STAT5 or STAT5-Regulated Pathways Suppresses Leukemogenesis of Ph+ Acute Lymphoblastic Leukemia
Combining standard cytotoxic chemotherapy with BCR-ABL1 tyrosine kinase inhibitors (TKI) has greatly improved the upfront treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, due to the development of drug resistance through both BCR-ABL1-dep...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2018-10, Vol.78 (20), p.5793-5807 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combining standard cytotoxic chemotherapy with BCR-ABL1 tyrosine kinase inhibitors (TKI) has greatly improved the upfront treatment of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, due to the development of drug resistance through both BCR-ABL1-dependent and -independent mechanisms, prognosis remains poor. The STAT5 transcription factor is activated by BCR-ABL1 and by JAK2-dependent cytokine signaling; therefore, inhibiting its activity could address both mechanisms of resistance in Ph+ ALL. We show here that genetic and pharmacologic inhibition of STAT5 activity suppresses cell growth, induces apoptosis, and inhibits leukemogenesis of Ph+ cell lines and patient-derived newly diagnosed and relapsed/TKI-resistant Ph+ ALL cells
and in mouse models. STAT5 silencing decreased expression of the growth-promoting PIM-1 kinase, the apoptosis inhibitors MCL1 and BCL2, and increased expression of proapoptotic BIM protein. The resulting apoptosis of STAT5-silenced Ph+ BV173 cells was rescued by silencing of BIM or restoration of BCL2 expression. Treatment of Ph+ ALL cells, including samples from relapsed/refractory patients, with the PIM kinase inhibitor AZD1208 and/or the BCL2 family antagonist Sabutoclax markedly suppressed cell growth and leukemogenesis
and in mice. Together, these studies indicate that targeting STAT5 or STAT5-regulated pathways may provide a new approach for therapy development in Ph+ ALL, especially the relapsed/TKI-resistant disease.
Suppression of STAT5 by BCL2 and PIM kinase inhibitors reduces leukemia burden in mice and constitutes a new potential therapeutic approach against Ph+ ALL, especially in tyrosine kinase inhibitor-resistant disease.
. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-18-0195 |