The population genetics and evolutionary epidemiology of RNA viruses

RNA viruses are ubiquitous intracellular parasites that are responsible for many emerging diseases, including AIDS and SARS. Here, we discuss the principal mechanisms of RNA virus evolution and highlight areas where future research is required. The rapidity of sequence change in RNA viruses means th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Microbiology 2004-04, Vol.2 (4), p.279-288
Hauptverfasser: Moya, Andrés, Holmes, Edward C, González-Candelas, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RNA viruses are ubiquitous intracellular parasites that are responsible for many emerging diseases, including AIDS and SARS. Here, we discuss the principal mechanisms of RNA virus evolution and highlight areas where future research is required. The rapidity of sequence change in RNA viruses means that they are useful experimental models for the study of evolution in general and it enables us to watch them change in 'real time', and retrace the spread through populations with molecular phylogenies. An understanding of the mechanisms of RNA virus sequence change is also crucial to predicting important aspects of their emergence and long-term evolution. The authors discuss the main mechanisms of RNA virus evolution : mutation, recombination, natural selection, genetic drift and migration, and how these interact to shape the genetic structure of populations. The quasispecies model of RNA virus evolution is explained and the question of whether this model provides an accurate description of RNA virus evolution is discussed. Experiments that can be carried out to test the basic principles of evolutionary theory are briefly described. The authors review what such experiments have told us about virus evolution and, more widely, what these experiments have revealed in terms of general evolutionary principles. RNA viruses evolve quickly, so a detailed reconstruction of their epidemiological history can be undertaken. The authors show how epidemiological patterns of viruses result from their evolution at two different levels: within individual hosts (and vectors) and among hosts at the population level. Using several examples, including HIV and SARS, the authors describe how studying RNA virus evolution could be used to understand virus emergence. Finally, the important topics of the evolution of virulence and resistance to drugs are discussed.
ISSN:1740-1526
1740-1534
DOI:10.1038/nrmicro863