In vitro reconstitution of functional small ribosomal subunit assembly for comprehensive analysis of ribosomal elements in E. coli

In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2020-03, Vol.3 (1), p.142-142, Article 142
Hauptverfasser: Shimojo, Masaru, Amikura, Kazuaki, Masuda, Keiko, Kanamori, Takashi, Ueda, Takuya, Shimizu, Yoshihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-based integrated Synthesis, Assembly, and Translation (R-iSAT), assembly and evaluation of the small ribosomal subunits are coupled with ribosomal RNA (rRNA) synthesis in a reconstituted cell-free protein synthesis system. By changing the components of R-iSAT, including recombinant ribosomal protein composition, we coupled ribosomal assembly with ribosomal protein synthesis, enabling functional synthesis of ribosomal proteins and subsequent subunit assembly. In addition, we assembled and evaluated subunits with mutations in both rRNA and ribosomal proteins. The study demonstrated that our scheme provides new ways to comprehensively analyze any elements of the small ribosomal subunit, with the goal of improving our understanding of ribosomal biogenesis, function, and engineering. Shimojo et al. demonstrate the use of individually purified ribosomal proteins added into iSAT (integrated ribosomal synthesis, assembly, and translation) system to enable assembly of functional 30S subunits. They further show that while some 30S r-proteins must be full synthesized before transcription, others may be co-transcriptionally produced, to enable the assembly of 30S particles.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-020-0874-8