Genetic recombination between RNA components of a multipartite plant virus

Genetic recombination of DNA is one of the fundamental mechanisms underlying the evolution of DNA-based organisms and results in their diversity and adaptability. The importance of the role of recombination is far less evident for the RNA-based genomes that occur in most plant viruses and in many an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1986-05, Vol.321 (6069), p.528-531
Hauptverfasser: Bujarski, J.J, Kaesberg, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic recombination of DNA is one of the fundamental mechanisms underlying the evolution of DNA-based organisms and results in their diversity and adaptability. The importance of the role of recombination is far less evident for the RNA-based genomes that occur in most plant viruses and in many animal viruses. RNA recombination has been shown to promote the evolutionary variation of picornaviruses 1–4 , it is involved in the creation of defective interfering (DI) RNAs of positive- and negative-strand viruses 5–9 and is implicated in the synthesis of the messenger RNAs of influenza virus 10 and coronavirus 11 . However, RNA recombination has not been found to date in viruses that infect plants. In fact, the lack of DI RNAs and the inability to demonstrate recombination in mixedly infected plants has been regarded as evidence that plants do not support recombination of viral RNAs. Here we provide the first molecular evidence for recombination of plant viral RNA. For brome mosaic virus (BMV), a plus-stranded, tripartite-genome virus of monocots, we show that a deletion in the 3′ end region of a single BMV RNA genomic component can be repaired during the development of infection by recombination with the homologous region of either of the two remaining wild-type BMV RNA components. This result clearly shows that plant viruses have available powerful recombinatory mechanisms that previously were thought to exist only in animal hosts, thus they are able to adapt and diversify in a manner comparable to animal viruses. Moreover, our observation suggests an increased versatility of viruses for use as vectors in introducing new genes into plants.
ISSN:0028-0836
1476-4687
DOI:10.1038/321528a0