A Verified Implementation of Algebraic Numbers in Isabelle/HOL
We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebrai...
Gespeichert in:
Veröffentlicht in: | Journal of automated reasoning 2020-03, Vol.64 (3), p.363-389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | Journal of automated reasoning |
container_volume | 64 |
creator | Joosten, Sebastiaan J. C. Thiemann, René Yamada, Akihisa |
description | We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants. |
doi_str_mv | 10.1007/s10817-018-09504-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368393545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</originalsourceid><addsrcrecordid>eNp9kUtPHDEQhK2IKGxI_gAHNBKXXCa0X2P7grRCJKy0CpckV8v29CxG81jsHRD_PiZLyOOQUx_66-oqFSHHFD5SAHWWKWiqaqC6BiNB1A-vyIJKxWtoFByQBdBG10pwfkje5nwLAJyCeUMOOWOsoRoW5HxZfccUu4httRq2PQ447twuTmM1ddWy36BPLobqyzx4TLmKY7XKzmPf49nV9foded25PuP753lEvn26_HpxVa-vP68ulus6CCV2teHaYUu9a1rKKATu0bNGKymYkVR6gZ6LVjbCG-ak6IIK2gvFOASghkl-RM73utvZD9iGYjK53m5THFx6tJOL9u_NGG_sZrq3CrRRjBWBD88CabqbMe_sEHMoMdyI05wt41powRpjCnr6D3o7zWks8QrVaG64FE-O2J4Kaco5YfdihoJ9qsfu67GlHvuzHvtQjk7-jPFy8quPAvA9kMtq3GD6_fs_sj8AXKqZ5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368393545</pqid></control><display><type>article</type><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><source>SpringerLink Journals - AutoHoldings</source><creator>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</creator><creatorcontrib>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</creatorcontrib><description>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-018-09504-w</identifier><identifier>PMID: 32226180</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Algorithms ; Artificial Intelligence ; Bivariate analysis ; Complex numbers ; Computer Science ; Factorization ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Polynomials ; Resultants ; Symbolic and Algebraic Manipulation</subject><ispartof>Journal of automated reasoning, 2020-03, Vol.64 (3), p.363-389</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018.</rights><rights>Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</citedby><cites>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</cites><orcidid>0000-0002-0323-8829 ; 0000-0001-8872-2240 ; 0000-0002-6590-6220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-018-09504-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-018-09504-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32226180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joosten, Sebastiaan J. C.</creatorcontrib><creatorcontrib>Thiemann, René</creatorcontrib><creatorcontrib>Yamada, Akihisa</creatorcontrib><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><addtitle>J Autom Reason</addtitle><description>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bivariate analysis</subject><subject>Complex numbers</subject><subject>Computer Science</subject><subject>Factorization</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Polynomials</subject><subject>Resultants</subject><subject>Symbolic and Algebraic Manipulation</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPHDEQhK2IKGxI_gAHNBKXXCa0X2P7grRCJKy0CpckV8v29CxG81jsHRD_PiZLyOOQUx_66-oqFSHHFD5SAHWWKWiqaqC6BiNB1A-vyIJKxWtoFByQBdBG10pwfkje5nwLAJyCeUMOOWOsoRoW5HxZfccUu4httRq2PQ447twuTmM1ddWy36BPLobqyzx4TLmKY7XKzmPf49nV9foded25PuP753lEvn26_HpxVa-vP68ulus6CCV2teHaYUu9a1rKKATu0bNGKymYkVR6gZ6LVjbCG-ak6IIK2gvFOASghkl-RM73utvZD9iGYjK53m5THFx6tJOL9u_NGG_sZrq3CrRRjBWBD88CabqbMe_sEHMoMdyI05wt41powRpjCnr6D3o7zWks8QrVaG64FE-O2J4Kaco5YfdihoJ9qsfu67GlHvuzHvtQjk7-jPFy8quPAvA9kMtq3GD6_fs_sj8AXKqZ5g</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Joosten, Sebastiaan J. C.</creator><creator>Thiemann, René</creator><creator>Yamada, Akihisa</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0323-8829</orcidid><orcidid>https://orcid.org/0000-0001-8872-2240</orcidid><orcidid>https://orcid.org/0000-0002-6590-6220</orcidid></search><sort><creationdate>20200301</creationdate><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><author>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bivariate analysis</topic><topic>Complex numbers</topic><topic>Computer Science</topic><topic>Factorization</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Polynomials</topic><topic>Resultants</topic><topic>Symbolic and Algebraic Manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joosten, Sebastiaan J. C.</creatorcontrib><creatorcontrib>Thiemann, René</creatorcontrib><creatorcontrib>Yamada, Akihisa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joosten, Sebastiaan J. C.</au><au>Thiemann, René</au><au>Yamada, Akihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><addtitle>J Autom Reason</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>64</volume><issue>3</issue><spage>363</spage><epage>389</epage><pages>363-389</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32226180</pmid><doi>10.1007/s10817-018-09504-w</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0323-8829</orcidid><orcidid>https://orcid.org/0000-0001-8872-2240</orcidid><orcidid>https://orcid.org/0000-0002-6590-6220</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-7433 |
ispartof | Journal of automated reasoning, 2020-03, Vol.64 (3), p.363-389 |
issn | 0168-7433 1573-0670 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089722 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Artificial Intelligence Bivariate analysis Complex numbers Computer Science Factorization Mathematical Logic and Formal Languages Mathematical Logic and Foundations Polynomials Resultants Symbolic and Algebraic Manipulation |
title | A Verified Implementation of Algebraic Numbers in Isabelle/HOL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Verified%20Implementation%20of%20Algebraic%20Numbers%20in%20Isabelle/HOL&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Joosten,%20Sebastiaan%20J.%20C.&rft.date=2020-03-01&rft.volume=64&rft.issue=3&rft.spage=363&rft.epage=389&rft.pages=363-389&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-018-09504-w&rft_dat=%3Cproquest_pubme%3E2368393545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368393545&rft_id=info:pmid/32226180&rfr_iscdi=true |