A Verified Implementation of Algebraic Numbers in Isabelle/HOL

We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2020-03, Vol.64 (3), p.363-389
Hauptverfasser: Joosten, Sebastiaan J. C., Thiemann, René, Yamada, Akihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 3
container_start_page 363
container_title Journal of automated reasoning
container_volume 64
creator Joosten, Sebastiaan J. C.
Thiemann, René
Yamada, Akihisa
description We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.
doi_str_mv 10.1007/s10817-018-09504-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2368393545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</originalsourceid><addsrcrecordid>eNp9kUtPHDEQhK2IKGxI_gAHNBKXXCa0X2P7grRCJKy0CpckV8v29CxG81jsHRD_PiZLyOOQUx_66-oqFSHHFD5SAHWWKWiqaqC6BiNB1A-vyIJKxWtoFByQBdBG10pwfkje5nwLAJyCeUMOOWOsoRoW5HxZfccUu4httRq2PQ447twuTmM1ddWy36BPLobqyzx4TLmKY7XKzmPf49nV9foded25PuP753lEvn26_HpxVa-vP68ulus6CCV2teHaYUu9a1rKKATu0bNGKymYkVR6gZ6LVjbCG-ak6IIK2gvFOASghkl-RM73utvZD9iGYjK53m5THFx6tJOL9u_NGG_sZrq3CrRRjBWBD88CabqbMe_sEHMoMdyI05wt41powRpjCnr6D3o7zWks8QrVaG64FE-O2J4Kaco5YfdihoJ9qsfu67GlHvuzHvtQjk7-jPFy8quPAvA9kMtq3GD6_fs_sj8AXKqZ5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2368393545</pqid></control><display><type>article</type><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><source>SpringerLink Journals - AutoHoldings</source><creator>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</creator><creatorcontrib>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</creatorcontrib><description>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-018-09504-w</identifier><identifier>PMID: 32226180</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Algorithms ; Artificial Intelligence ; Bivariate analysis ; Complex numbers ; Computer Science ; Factorization ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Polynomials ; Resultants ; Symbolic and Algebraic Manipulation</subject><ispartof>Journal of automated reasoning, 2020-03, Vol.64 (3), p.363-389</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018.</rights><rights>Journal of Automated Reasoning is a copyright of Springer, (2018). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</citedby><cites>FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</cites><orcidid>0000-0002-0323-8829 ; 0000-0001-8872-2240 ; 0000-0002-6590-6220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-018-09504-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-018-09504-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32226180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joosten, Sebastiaan J. C.</creatorcontrib><creatorcontrib>Thiemann, René</creatorcontrib><creatorcontrib>Yamada, Akihisa</creatorcontrib><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><addtitle>J Autom Reason</addtitle><description>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bivariate analysis</subject><subject>Complex numbers</subject><subject>Computer Science</subject><subject>Factorization</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Polynomials</subject><subject>Resultants</subject><subject>Symbolic and Algebraic Manipulation</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtPHDEQhK2IKGxI_gAHNBKXXCa0X2P7grRCJKy0CpckV8v29CxG81jsHRD_PiZLyOOQUx_66-oqFSHHFD5SAHWWKWiqaqC6BiNB1A-vyIJKxWtoFByQBdBG10pwfkje5nwLAJyCeUMOOWOsoRoW5HxZfccUu4httRq2PQ447twuTmM1ddWy36BPLobqyzx4TLmKY7XKzmPf49nV9foded25PuP753lEvn26_HpxVa-vP68ulus6CCV2teHaYUu9a1rKKATu0bNGKymYkVR6gZ6LVjbCG-ak6IIK2gvFOASghkl-RM73utvZD9iGYjK53m5THFx6tJOL9u_NGG_sZrq3CrRRjBWBD88CabqbMe_sEHMoMdyI05wt41powRpjCnr6D3o7zWks8QrVaG64FE-O2J4Kaco5YfdihoJ9qsfu67GlHvuzHvtQjk7-jPFy8quPAvA9kMtq3GD6_fs_sj8AXKqZ5g</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Joosten, Sebastiaan J. C.</creator><creator>Thiemann, René</creator><creator>Yamada, Akihisa</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0323-8829</orcidid><orcidid>https://orcid.org/0000-0001-8872-2240</orcidid><orcidid>https://orcid.org/0000-0002-6590-6220</orcidid></search><sort><creationdate>20200301</creationdate><title>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</title><author>Joosten, Sebastiaan J. C. ; Thiemann, René ; Yamada, Akihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-938aed1ba6d1210c3beb26875429515b4eb34d564b92a54fc7c8b47230c019253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bivariate analysis</topic><topic>Complex numbers</topic><topic>Computer Science</topic><topic>Factorization</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Polynomials</topic><topic>Resultants</topic><topic>Symbolic and Algebraic Manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joosten, Sebastiaan J. C.</creatorcontrib><creatorcontrib>Thiemann, René</creatorcontrib><creatorcontrib>Yamada, Akihisa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joosten, Sebastiaan J. C.</au><au>Thiemann, René</au><au>Yamada, Akihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Verified Implementation of Algebraic Numbers in Isabelle/HOL</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><addtitle>J Autom Reason</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>64</volume><issue>3</issue><spage>363</spage><epage>389</epage><pages>363-389</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32226180</pmid><doi>10.1007/s10817-018-09504-w</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0323-8829</orcidid><orcidid>https://orcid.org/0000-0001-8872-2240</orcidid><orcidid>https://orcid.org/0000-0002-6590-6220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-7433
ispartof Journal of automated reasoning, 2020-03, Vol.64 (3), p.363-389
issn 0168-7433
1573-0670
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7089722
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Artificial Intelligence
Bivariate analysis
Complex numbers
Computer Science
Factorization
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Polynomials
Resultants
Symbolic and Algebraic Manipulation
title A Verified Implementation of Algebraic Numbers in Isabelle/HOL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Verified%20Implementation%20of%20Algebraic%20Numbers%20in%20Isabelle/HOL&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Joosten,%20Sebastiaan%20J.%20C.&rft.date=2020-03-01&rft.volume=64&rft.issue=3&rft.spage=363&rft.epage=389&rft.pages=363-389&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-018-09504-w&rft_dat=%3Cproquest_pubme%3E2368393545%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2368393545&rft_id=info:pmid/32226180&rfr_iscdi=true