A Verified Implementation of Algebraic Numbers in Isabelle/HOL

We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2020-03, Vol.64 (3), p.363-389
Hauptverfasser: Joosten, Sebastiaan J. C., Thiemann, René, Yamada, Akihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formalize algebraic numbers in Isabelle/HOL. Our development serves as a verified implementation of algebraic operations on real and complex numbers. We moreover provide algorithms that can identify all the real or complex roots of rational polynomials, and two implementations to display algebraic numbers, an approximative version and an injective precise one. We obtain verified Haskell code for these operations via Isabelle’s code generator. The development combines various existing formalizations such as matrices, Sturm’s theorem, and polynomial factorization, and it includes new formalizations about bivariate polynomials, unique factorization domains, resultants and subresultants.
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-018-09504-w