Inorganic polyphosphate potentiates lipopolysaccharide-induced macrophage inflammatory response
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate units that are linked by phosphoanhydride bonds and is involved in various pathophysiological processes. However, the role of polyP in immune cell dysfunction is not well-understood. In this study, using several biochemical and ce...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-03, Vol.295 (12), p.4014-4023 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate units that are linked by phosphoanhydride bonds and is involved in various pathophysiological processes. However, the role of polyP in immune cell dysfunction is not well-understood. In this study, using several biochemical and cell biology approaches, including cytokine assays, immunofluorescence microscopy, receptor-binding assays with quartz crystal microbalance, and dynamic light scanning, we investigated the effect of polyP on in vitro lipopolysaccharide (LPS)-induced macrophage inflammatory response. PolyP up-regulated LPS-induced production of the inflammatory cytokines, such as tumor necrosis factor α, interleukin-1β, and interleukin-6, in macrophages, and the effect was polyP dose– and chain length–dependent. However, orthophosphate did not exhibit this effect. PolyP enhanced the LPS-induced intracellular macrophage inflammatory signals. Affinity analysis revealed that polyP interacts with LPS, inducing formation of small micelles, and the polyP-LPS complex enhanced the binding affinity of LPS to Toll-like receptor 4 (TLR4) on macrophages. These results suggest that inorganic polyP plays a critical role in promoting inflammatory response by enhancing the interaction between LPS and TLR4 in macrophages. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.RA119.011763 |