Isolation and characterization of a new highly effective 17β-estradiol-degrading Gordonia sp. strain R9
In this report, Gordonia sp. strain R9 isolated from an enrichment culture of chicken leachate was confirmed to degrade 17β-estradiol (E2), which can also use other estrogens (estrone, estriol, and 17α-ethynylestradiol) and testosterone as sole carbon and energy sources. Optimization of growth condi...
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2020-04, Vol.10 (4), p.174-174, Article 174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this report,
Gordonia
sp. strain R9 isolated from an enrichment culture of chicken leachate was confirmed to degrade 17β-estradiol (E2), which can also use other estrogens (estrone, estriol, and 17α-ethynylestradiol) and testosterone as sole carbon and energy sources. Optimization of growth conditions showed that
Gordonia
sp. strain R9 can tolerate a very wide range of temperature (4–40 °C) and pH (1.0–11.0), and is sensitive to antibiotics including kanamycin, ampicillin, chloramphenicol, and carbenicillin. Optimal culture conditions for E2 degradation were 30 °C and pH 7.0 with almost 100% degradation of E2 concentrations ranging from 50 µg/L to 5 mg/L within 24 h. The E2 intermediates so generated included estrone (E1), estratriol (E3), (3Z)-3-(3-hydroxy-3a-methyl-7-oxododecahydro-6H-cyclopenta[a]naphthalen-6-ylidene) propanoic acid and 3-hydroxy-3a-methyl-7-oxododecahydro-1H-cyclopenta[a]naphthalene-6-carboxylic acid. These results indicate that the highly effective E2-degradative ability of
Gordonia
sp. strain R9 merits further investigation as a candidate for large-scale estrogen biodegradation. |
---|---|
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-020-2156-z |