Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome
Living cells regulate key cellular processes by spatial organization of catalytically active proteins in higher-order signalling complexes. These act as organizing centres to facilitate proximity-induced activation and inhibition of multiple intrinsically weakly associating signalling components, wh...
Gespeichert in:
Veröffentlicht in: | Nature catalysis 2020-03, Vol.3 (3), p.295-306 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Living cells regulate key cellular processes by spatial organization of catalytically active proteins in higher-order signalling complexes. These act as organizing centres to facilitate proximity-induced activation and inhibition of multiple intrinsically weakly associating signalling components, which makes elucidation of the underlying protein–protein interactions challenging. Here we show that DNA origami nanostructures provide a programmable molecular platform for the systematic analysis of signalling proteins by engineering a synthetic DNA origami-based version of the apoptosome, a multiprotein complex that regulates apoptosis by colocalizing multiple caspase-9 monomers. Tethering of both wild-type and inactive caspase-9 variants to a DNA origami platform demonstrates that enzymatic activity is induced by proximity-driven dimerization with half-of-sites reactivity and, furthermore, reveals a multivalent activity enhancement in oligomers of three and four enzymes. Our results offer fundamental insights in caspase-9 activity regulation and demonstrate that DNA origami-based protein assembly platforms have the potential to inform the function of other multi-enzyme complexes involved in inflammation, innate immunity and cell death.
Investigation of proximity-driven enzyme regulation in intracellular signalling could benefit from suitable model systems. This work reports the engineering of a synthetic DNA origami-based apoptosome facilitating detailed analysis of caspase-9 activation, which is essential in programmed cell death. |
---|---|
ISSN: | 2520-1158 2520-1158 |
DOI: | 10.1038/s41929-019-0403-7 |