DTD: An R Package for Digital Tissue Deconvolution

Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2020-03, Vol.27 (3), p.386-389
Hauptverfasser: Schön, Marian, Simeth, Jakob, Heinrich, Paul, Görtler, Franziska, Solbrig, Stefan, Wettig, Tilo, Oefner, Peter J, Altenbuchinger, Michael, Spang, Rainer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital tissue deconvolution (DTD) estimates the cellular composition of a tissue from its bulk gene-expression profile. For this, DTD approximates the bulk as a mixture of cell-specific expression profiles. Different tissues have different cellular compositions, with cells in different activation states, and embedded in different environments. Consequently, DTD can profit from tailoring the deconvolution model to a specific tissue context. Loss-function learning adapts DTD to a specific tissue context, such as the deconvolution of blood, or a specific type of tumor tissue. We provide software for loss-function learning, for its validation and visualization, and for applying the DTD models to new data.
ISSN:1557-8666
1066-5277
1557-8666
DOI:10.1089/cmb.2019.0469