C-type natriuretic peptide co-ordinates cardiac structure and function

Abstract Aims C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European heart journal 2020-03, Vol.41 (9), p.1006-1020
Hauptverfasser: Moyes, Amie J, Chu, Sandy M, Aubdool, Aisah A, Dukinfield, Matthew S, Margulies, Kenneth B, Bedi, Kenneth C, Hodivala-Dilke, Kairbaan, Baliga, Reshma S, Hobbs, Adrian J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Aims C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. Methods and results Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP−/−), endothelium (ecCNP−/−), and fibroblast (fbCNP−/−)—specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B−/−, and NPR-C−/− animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C−/− mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP−/− and NPR-C−/−, but not ecCNP−/−, vs. WT. The cardiac phenotype of cmCNP−/−, fbCNP−/−, and NPR-C−/− (but not ecCNP−/− or NPR-B−/−) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C−/−, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. Conclusion C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
ISSN:0195-668X
1522-9645
1522-9645
DOI:10.1093/eurheartj/ehz093