A novel Asfarvirus-like virus identified as a potential cause of mass mortality of abalone

A novel Asfarvirus-like virus is proposed as the etiological agent responsible for mass mortality in abalone. The disease, called abalone amyotrophia, originally was recognized in the 1980s, but efforts to identify a causative agent were unsuccessful. We prepared a semi-purified fraction by nuclease...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4620-4620, Article 4620
Hauptverfasser: Matsuyama, Tomomasa, Takano, Tomokazu, Nishiki, Issei, Fujiwara, Atushi, Kiryu, Ikunari, Inada, Mari, Sakai, Takamitsu, Terashima, Sachiko, Matsuura, Yuta, Isowa, Kiyoshi, Nakayasu, Chihaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel Asfarvirus-like virus is proposed as the etiological agent responsible for mass mortality in abalone. The disease, called abalone amyotrophia, originally was recognized in the 1980s, but efforts to identify a causative agent were unsuccessful. We prepared a semi-purified fraction by nuclease treatment and ultracentrifugation of diseased abalone homogenate, and the existence of the etiological agent in the fraction was confirmed by a challenge test. Using next-generation sequencing and PCR-based epidemiological surveys, we obtained a partial sequence with similarity to a member of the family Asfarviridae. BLASTP analysis of the predicted proteins against a virus database resulted in 48 proteins encoded by the novel virus with top hits against proteins encoded by African swine fever virus (ASFV). Phylogenetic analyses of predicted proteins of the novel virus confirmed that ASFV represents the closest relative. Comparative genomic analysis revealed gene-order conservation between the novel virus and ASFV. In situ hybridization targeting the gene encoding the major capsid protein of the novel virus detected positive signals only in tissue from diseased abalone. The results of this study suggest that the putative causative agent should be considered a tentative new member of the family Asfarviridae, which we provisionally designate abalone asfa-like virus (AbALV).
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-61492-3