Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area

In this epidemiologic study, 16 S rRNA sequencing was used to investigate the changes of diversity and composition profile of gut microbiota resulting from long-term exposure to multiple metals, including arsenic (As), cadmium (Cd), cuprum (Cu), lead (Pb), and zinc (Zn). Due to long-term exposure to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4453-4453, Article 4453
Hauptverfasser: Shao, Mengmeng, Zhu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this epidemiologic study, 16 S rRNA sequencing was used to investigate the changes of diversity and composition profile of gut microbiota resulting from long-term exposure to multiple metals, including arsenic (As), cadmium (Cd), cuprum (Cu), lead (Pb), and zinc (Zn). Due to long-term exposure to various metals, the relative abundances of Lachnospiraceae , Eubacterium eligens , Ruminococcaceae UGG-014, Erysipelotrichaceae UCG-003, Tyzzerella 3, Bacteroides , Slackia , italics , and Roseburia were found to become much higher, whereas the abundance of Prevotella 9 presented an opposite trend. Additionally, differences between males and female groups were found, such as the greater richness and evenness of bacteria for men subjected to long-term metal exposure in polluted areas. The changes of men’s microbiomes were more significant as a result of higher daily intake, mining and smelting activity, and living habits. This research presents a new theoretical basis for the correlation between long-term metal exposure and gut health for people living in contaminated areas.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-61143-7