Ultrastructural analysis of the dehydrated tardigrade Hypsibius exemplaris unveils an anhydrobiotic-specific architecture

Tardigrades can cope with adverse environmental conditions by turning into anhydrobiotes with a characteristic tun shape. Tun formation is an essential morphological adaptation for tardigrade entry into the anhydrobiotic state. The tun cell structure and ultrastructure have rarely been explored in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-03, Vol.10 (1), p.4324-4324, Article 4324
Hauptverfasser: Richaud, Myriam, Le Goff, Emilie, Cazevielle, Chantal, Ono, Fumihisa, Mori, Yoshihisa, Saini, Naurang L., Cuq, Pierre, Baghdiguian, Stephen, Godefroy, Nelly, Galas, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tardigrades can cope with adverse environmental conditions by turning into anhydrobiotes with a characteristic tun shape. Tun formation is an essential morphological adaptation for tardigrade entry into the anhydrobiotic state. The tun cell structure and ultrastructure have rarely been explored in tardigrades in general and never in Hypsibius exemplaris . We used transmission electron microscopy to compare cellular organization and ultrastructures between hydrated and anhydrobiotic H. exemplaris . Despite a globally similar cell organelle structure and a number of cells not significantly different between hydrated and desiccated tardigrades, reductions in the sizes of both cells and mitochondria were detected in dehydrated animals. Moreover, in anhydrobiotes, secretory active cells with a dense endoplasmic reticulum network were observed. Interestingly, these anhydrobiote-specific cells are in a close relationship with a specific extracellular structure surrounding each cell. It is possible that this rampart-like extracellular structure resulted from the accumulation of anhydrobiotic-specific material to protect the cells. Interestingly, after five hours of rehydration, the number of secretory cells decreased, and the specific extracellular structure began to disappear. Twenty-four hours after the beginning of rehydration, the cellular structure and ultrastructure were comparable to those observed in hydrated tardigrades.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-61165-1