A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation
The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-residen...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2019-07, Vol.365 (6448), p.53-60 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 6448 |
container_start_page | 53 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 365 |
creator | Cui, Yixian Parashar, Smriti Zahoor, Muhammad Needham, Patrick G. Mari, Muriel Zhu, Ming Chen, Shuliang Ho, Hsuan-Chung Reggiori, Fulvio Farhan, Hesso Brodsky, Jeffrey L. Ferro-Novick, Susan |
description | The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy. |
doi_str_mv | 10.1126/science.aau9263 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26745322</jstor_id><sourcerecordid>26745322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwxIVLWn_FTi5I1YqPlSqVA5ytWWey61ViB9sB9b_H1W5XwGkO7zdvnv2q6jWjV4xxdZ2sQ2_xCmDpuBJPqhWjXVN3nIqn1YpSoeqW6uaiepHSgdKideJ5dSEY14IxtarMDVnffdtsSFq2i3eZgM2J_HZ5T8ATWHKY97C7JxEtzjlEkgPJEHeYCfo-zCOkydkiZ2eXcZnIUJgedxF6yC74l9WzAcaEr07zsvrx-dP39df69u7LZn1zW1updK4RBokctjhQ2XE2MDVgCwIok9oiE2CVtNCqTlLsKdpm27Q9l42WPXCtQFxWH4--87KdsLfoc4TRzNFNEO9NAGf-Vbzbm134ZTRVXLSqGLw7GtjoUnbe-BDBMNo23GglhCzEh9OJGH4umLKZXLI4juAxLMlw3giuZclY0Pf_oYewRF8-4IHSnLe6Y4W6fjwZUoo4nOMyah7qNad6zanesvH271ee-cc-C_DmCBxSKeusc6VlCcfFH8vzrTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228791</pqid></control><display><type>article</type><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>American Association for the Advancement of Science</source><creator>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</creator><creatorcontrib>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</creatorcontrib><description>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau9263</identifier><identifier>PMID: 31273116</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adapters ; Adaptor proteins ; Agglomeration ; Anatomy ; Autophagy ; Autophagy-Related Proteins - metabolism ; Biodegradation ; Cargo ; Central nervous system ; Coated vesicles ; Coating ; COP-Coated Vesicles - metabolism ; Cytosol ; Degradation ; Depletion ; Deprivation ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress ; Enzyme inhibitors ; Exports ; Golgi apparatus ; GTPase-Activating Proteins - metabolism ; Homeostasis ; Homology ; Kinases ; Mammalian cells ; Mammals ; Membrane Proteins - metabolism ; Membranes ; Networks ; Neurodegenerative diseases ; Neurological diseases ; Nutrients ; Packaging ; Phagocytosis ; Phagosomes ; Proteasomes ; Protein Aggregates ; Protein Aggregation, Pathological - metabolism ; Protein folding ; Protein interaction ; Protein transport ; Proteins ; Proteolysis ; Quality control ; Rapamycin ; Receptor mechanisms ; Receptors ; Receptors, Cytoplasmic and Nuclear - metabolism ; Regulators ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Secretion ; Secretory vesicles ; Starvation ; TOR protein ; Traffic ; Traffic control ; Transcription ; Unfolded Protein Response ; Vesicles ; Yeast</subject><ispartof>Science (American Association for the Advancement of Science), 2019-07, Vol.365 (6448), p.53-60</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</citedby><cites>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</cites><orcidid>0000-0002-1674-7411 ; 0000-0002-6984-8486 ; 0000-0001-8714-7352 ; 0000-0002-7175-7604 ; 0000-0001-8260-1421 ; 0000-0002-6348-2612 ; 0000-0003-2108-885X ; 0000-0001-9539-6121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2871,2872,26548,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31273116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Yixian</creatorcontrib><creatorcontrib>Parashar, Smriti</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Needham, Patrick G.</creatorcontrib><creatorcontrib>Mari, Muriel</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Chen, Shuliang</creatorcontrib><creatorcontrib>Ho, Hsuan-Chung</creatorcontrib><creatorcontrib>Reggiori, Fulvio</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><creatorcontrib>Ferro-Novick, Susan</creatorcontrib><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</description><subject>Adapters</subject><subject>Adaptor proteins</subject><subject>Agglomeration</subject><subject>Anatomy</subject><subject>Autophagy</subject><subject>Autophagy-Related Proteins - metabolism</subject><subject>Biodegradation</subject><subject>Cargo</subject><subject>Central nervous system</subject><subject>Coated vesicles</subject><subject>Coating</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>Cytosol</subject><subject>Degradation</subject><subject>Depletion</subject><subject>Deprivation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Enzyme inhibitors</subject><subject>Exports</subject><subject>Golgi apparatus</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Kinases</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Networks</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Nutrients</subject><subject>Packaging</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Proteasomes</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological - metabolism</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Quality control</subject><subject>Rapamycin</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Regulators</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Secretion</subject><subject>Secretory vesicles</subject><subject>Starvation</subject><subject>TOR protein</subject><subject>Traffic</subject><subject>Traffic control</subject><subject>Transcription</subject><subject>Unfolded Protein Response</subject><subject>Vesicles</subject><subject>Yeast</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmwxIVLWn_FTi5I1YqPlSqVA5ytWWey61ViB9sB9b_H1W5XwGkO7zdvnv2q6jWjV4xxdZ2sQ2_xCmDpuBJPqhWjXVN3nIqn1YpSoeqW6uaiepHSgdKideJ5dSEY14IxtarMDVnffdtsSFq2i3eZgM2J_HZ5T8ATWHKY97C7JxEtzjlEkgPJEHeYCfo-zCOkydkiZ2eXcZnIUJgedxF6yC74l9WzAcaEr07zsvrx-dP39df69u7LZn1zW1updK4RBokctjhQ2XE2MDVgCwIok9oiE2CVtNCqTlLsKdpm27Q9l42WPXCtQFxWH4--87KdsLfoc4TRzNFNEO9NAGf-Vbzbm134ZTRVXLSqGLw7GtjoUnbe-BDBMNo23GglhCzEh9OJGH4umLKZXLI4juAxLMlw3giuZclY0Pf_oYewRF8-4IHSnLe6Y4W6fjwZUoo4nOMyah7qNad6zanesvH271ee-cc-C_DmCBxSKeusc6VlCcfFH8vzrTQ</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Cui, Yixian</creator><creator>Parashar, Smriti</creator><creator>Zahoor, Muhammad</creator><creator>Needham, Patrick G.</creator><creator>Mari, Muriel</creator><creator>Zhu, Ming</creator><creator>Chen, Shuliang</creator><creator>Ho, Hsuan-Chung</creator><creator>Reggiori, Fulvio</creator><creator>Farhan, Hesso</creator><creator>Brodsky, Jeffrey L.</creator><creator>Ferro-Novick, Susan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1674-7411</orcidid><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><orcidid>https://orcid.org/0000-0001-8714-7352</orcidid><orcidid>https://orcid.org/0000-0002-7175-7604</orcidid><orcidid>https://orcid.org/0000-0001-8260-1421</orcidid><orcidid>https://orcid.org/0000-0002-6348-2612</orcidid><orcidid>https://orcid.org/0000-0003-2108-885X</orcidid><orcidid>https://orcid.org/0000-0001-9539-6121</orcidid></search><sort><creationdate>20190705</creationdate><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><author>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adapters</topic><topic>Adaptor proteins</topic><topic>Agglomeration</topic><topic>Anatomy</topic><topic>Autophagy</topic><topic>Autophagy-Related Proteins - metabolism</topic><topic>Biodegradation</topic><topic>Cargo</topic><topic>Central nervous system</topic><topic>Coated vesicles</topic><topic>Coating</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>Cytosol</topic><topic>Degradation</topic><topic>Depletion</topic><topic>Deprivation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Enzyme inhibitors</topic><topic>Exports</topic><topic>Golgi apparatus</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Kinases</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Networks</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Nutrients</topic><topic>Packaging</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Proteasomes</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological - metabolism</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Quality control</topic><topic>Rapamycin</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Regulators</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Secretion</topic><topic>Secretory vesicles</topic><topic>Starvation</topic><topic>TOR protein</topic><topic>Traffic</topic><topic>Traffic control</topic><topic>Transcription</topic><topic>Unfolded Protein Response</topic><topic>Vesicles</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yixian</creatorcontrib><creatorcontrib>Parashar, Smriti</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Needham, Patrick G.</creatorcontrib><creatorcontrib>Mari, Muriel</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Chen, Shuliang</creatorcontrib><creatorcontrib>Ho, Hsuan-Chung</creatorcontrib><creatorcontrib>Reggiori, Fulvio</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><creatorcontrib>Ferro-Novick, Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yixian</au><au>Parashar, Smriti</au><au>Zahoor, Muhammad</au><au>Needham, Patrick G.</au><au>Mari, Muriel</au><au>Zhu, Ming</au><au>Chen, Shuliang</au><au>Ho, Hsuan-Chung</au><au>Reggiori, Fulvio</au><au>Farhan, Hesso</au><au>Brodsky, Jeffrey L.</au><au>Ferro-Novick, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-07-05</date><risdate>2019</risdate><volume>365</volume><issue>6448</issue><spage>53</spage><epage>60</epage><pages>53-60</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31273116</pmid><doi>10.1126/science.aau9263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1674-7411</orcidid><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><orcidid>https://orcid.org/0000-0001-8714-7352</orcidid><orcidid>https://orcid.org/0000-0002-7175-7604</orcidid><orcidid>https://orcid.org/0000-0001-8260-1421</orcidid><orcidid>https://orcid.org/0000-0002-6348-2612</orcidid><orcidid>https://orcid.org/0000-0003-2108-885X</orcidid><orcidid>https://orcid.org/0000-0001-9539-6121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2019-07, Vol.365 (6448), p.53-60 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062386 |
source | MEDLINE; NORA - Norwegian Open Research Archives; American Association for the Advancement of Science |
subjects | Adapters Adaptor proteins Agglomeration Anatomy Autophagy Autophagy-Related Proteins - metabolism Biodegradation Cargo Central nervous system Coated vesicles Coating COP-Coated Vesicles - metabolism Cytosol Degradation Depletion Deprivation Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum Stress Enzyme inhibitors Exports Golgi apparatus GTPase-Activating Proteins - metabolism Homeostasis Homology Kinases Mammalian cells Mammals Membrane Proteins - metabolism Membranes Networks Neurodegenerative diseases Neurological diseases Nutrients Packaging Phagocytosis Phagosomes Proteasomes Protein Aggregates Protein Aggregation, Pathological - metabolism Protein folding Protein interaction Protein transport Proteins Proteolysis Quality control Rapamycin Receptor mechanisms Receptors Receptors, Cytoplasmic and Nuclear - metabolism Regulators Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Secretion Secretory vesicles Starvation TOR protein Traffic Traffic control Transcription Unfolded Protein Response Vesicles Yeast |
title | A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COPII%20subunit%20acts%20with%20an%20autophagy%20receptor%20to%20target%20endoplasmic%20reticulum%20for%20degradation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cui,%20Yixian&rft.date=2019-07-05&rft.volume=365&rft.issue=6448&rft.spage=53&rft.epage=60&rft.pages=53-60&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau9263&rft_dat=%3Cjstor_pubme%3E26745322%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257228791&rft_id=info:pmid/31273116&rft_jstor_id=26745322&rfr_iscdi=true |