A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation

The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-residen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-07, Vol.365 (6448), p.53-60
Hauptverfasser: Cui, Yixian, Parashar, Smriti, Zahoor, Muhammad, Needham, Patrick G., Mari, Muriel, Zhu, Ming, Chen, Shuliang, Ho, Hsuan-Chung, Reggiori, Fulvio, Farhan, Hesso, Brodsky, Jeffrey L., Ferro-Novick, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 6448
container_start_page 53
container_title Science (American Association for the Advancement of Science)
container_volume 365
creator Cui, Yixian
Parashar, Smriti
Zahoor, Muhammad
Needham, Patrick G.
Mari, Muriel
Zhu, Ming
Chen, Shuliang
Ho, Hsuan-Chung
Reggiori, Fulvio
Farhan, Hesso
Brodsky, Jeffrey L.
Ferro-Novick, Susan
description The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.
doi_str_mv 10.1126/science.aau9263
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26745322</jstor_id><sourcerecordid>26745322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxSMEokvhzAmwxIVLWn_FTi5I1YqPlSqVA5ytWWey61ViB9sB9b_H1W5XwGkO7zdvnv2q6jWjV4xxdZ2sQ2_xCmDpuBJPqhWjXVN3nIqn1YpSoeqW6uaiepHSgdKideJ5dSEY14IxtarMDVnffdtsSFq2i3eZgM2J_HZ5T8ATWHKY97C7JxEtzjlEkgPJEHeYCfo-zCOkydkiZ2eXcZnIUJgedxF6yC74l9WzAcaEr07zsvrx-dP39df69u7LZn1zW1updK4RBokctjhQ2XE2MDVgCwIok9oiE2CVtNCqTlLsKdpm27Q9l42WPXCtQFxWH4--87KdsLfoc4TRzNFNEO9NAGf-Vbzbm134ZTRVXLSqGLw7GtjoUnbe-BDBMNo23GglhCzEh9OJGH4umLKZXLI4juAxLMlw3giuZclY0Pf_oYewRF8-4IHSnLe6Y4W6fjwZUoo4nOMyah7qNad6zanesvH271ee-cc-C_DmCBxSKeusc6VlCcfFH8vzrTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228791</pqid></control><display><type>article</type><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><source>MEDLINE</source><source>NORA - Norwegian Open Research Archives</source><source>American Association for the Advancement of Science</source><creator>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</creator><creatorcontrib>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</creatorcontrib><description>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aau9263</identifier><identifier>PMID: 31273116</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adapters ; Adaptor proteins ; Agglomeration ; Anatomy ; Autophagy ; Autophagy-Related Proteins - metabolism ; Biodegradation ; Cargo ; Central nervous system ; Coated vesicles ; Coating ; COP-Coated Vesicles - metabolism ; Cytosol ; Degradation ; Depletion ; Deprivation ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress ; Enzyme inhibitors ; Exports ; Golgi apparatus ; GTPase-Activating Proteins - metabolism ; Homeostasis ; Homology ; Kinases ; Mammalian cells ; Mammals ; Membrane Proteins - metabolism ; Membranes ; Networks ; Neurodegenerative diseases ; Neurological diseases ; Nutrients ; Packaging ; Phagocytosis ; Phagosomes ; Proteasomes ; Protein Aggregates ; Protein Aggregation, Pathological - metabolism ; Protein folding ; Protein interaction ; Protein transport ; Proteins ; Proteolysis ; Quality control ; Rapamycin ; Receptor mechanisms ; Receptors ; Receptors, Cytoplasmic and Nuclear - metabolism ; Regulators ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Secretion ; Secretory vesicles ; Starvation ; TOR protein ; Traffic ; Traffic control ; Transcription ; Unfolded Protein Response ; Vesicles ; Yeast</subject><ispartof>Science (American Association for the Advancement of Science), 2019-07, Vol.365 (6448), p.53-60</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</citedby><cites>FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</cites><orcidid>0000-0002-1674-7411 ; 0000-0002-6984-8486 ; 0000-0001-8714-7352 ; 0000-0002-7175-7604 ; 0000-0001-8260-1421 ; 0000-0002-6348-2612 ; 0000-0003-2108-885X ; 0000-0001-9539-6121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2871,2872,26548,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31273116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Yixian</creatorcontrib><creatorcontrib>Parashar, Smriti</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Needham, Patrick G.</creatorcontrib><creatorcontrib>Mari, Muriel</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Chen, Shuliang</creatorcontrib><creatorcontrib>Ho, Hsuan-Chung</creatorcontrib><creatorcontrib>Reggiori, Fulvio</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><creatorcontrib>Ferro-Novick, Susan</creatorcontrib><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</description><subject>Adapters</subject><subject>Adaptor proteins</subject><subject>Agglomeration</subject><subject>Anatomy</subject><subject>Autophagy</subject><subject>Autophagy-Related Proteins - metabolism</subject><subject>Biodegradation</subject><subject>Cargo</subject><subject>Central nervous system</subject><subject>Coated vesicles</subject><subject>Coating</subject><subject>COP-Coated Vesicles - metabolism</subject><subject>Cytosol</subject><subject>Degradation</subject><subject>Depletion</subject><subject>Deprivation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Enzyme inhibitors</subject><subject>Exports</subject><subject>Golgi apparatus</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Homeostasis</subject><subject>Homology</subject><subject>Kinases</subject><subject>Mammalian cells</subject><subject>Mammals</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Networks</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Nutrients</subject><subject>Packaging</subject><subject>Phagocytosis</subject><subject>Phagosomes</subject><subject>Proteasomes</subject><subject>Protein Aggregates</subject><subject>Protein Aggregation, Pathological - metabolism</subject><subject>Protein folding</subject><subject>Protein interaction</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Quality control</subject><subject>Rapamycin</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Regulators</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Secretion</subject><subject>Secretory vesicles</subject><subject>Starvation</subject><subject>TOR protein</subject><subject>Traffic</subject><subject>Traffic control</subject><subject>Transcription</subject><subject>Unfolded Protein Response</subject><subject>Vesicles</subject><subject>Yeast</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>3HK</sourceid><recordid>eNpdkc1v1DAQxSMEokvhzAmwxIVLWn_FTi5I1YqPlSqVA5ytWWey61ViB9sB9b_H1W5XwGkO7zdvnv2q6jWjV4xxdZ2sQ2_xCmDpuBJPqhWjXVN3nIqn1YpSoeqW6uaiepHSgdKideJ5dSEY14IxtarMDVnffdtsSFq2i3eZgM2J_HZ5T8ATWHKY97C7JxEtzjlEkgPJEHeYCfo-zCOkydkiZ2eXcZnIUJgedxF6yC74l9WzAcaEr07zsvrx-dP39df69u7LZn1zW1updK4RBokctjhQ2XE2MDVgCwIok9oiE2CVtNCqTlLsKdpm27Q9l42WPXCtQFxWH4--87KdsLfoc4TRzNFNEO9NAGf-Vbzbm134ZTRVXLSqGLw7GtjoUnbe-BDBMNo23GglhCzEh9OJGH4umLKZXLI4juAxLMlw3giuZclY0Pf_oYewRF8-4IHSnLe6Y4W6fjwZUoo4nOMyah7qNad6zanesvH271ee-cc-C_DmCBxSKeusc6VlCcfFH8vzrTQ</recordid><startdate>20190705</startdate><enddate>20190705</enddate><creator>Cui, Yixian</creator><creator>Parashar, Smriti</creator><creator>Zahoor, Muhammad</creator><creator>Needham, Patrick G.</creator><creator>Mari, Muriel</creator><creator>Zhu, Ming</creator><creator>Chen, Shuliang</creator><creator>Ho, Hsuan-Chung</creator><creator>Reggiori, Fulvio</creator><creator>Farhan, Hesso</creator><creator>Brodsky, Jeffrey L.</creator><creator>Ferro-Novick, Susan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1674-7411</orcidid><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><orcidid>https://orcid.org/0000-0001-8714-7352</orcidid><orcidid>https://orcid.org/0000-0002-7175-7604</orcidid><orcidid>https://orcid.org/0000-0001-8260-1421</orcidid><orcidid>https://orcid.org/0000-0002-6348-2612</orcidid><orcidid>https://orcid.org/0000-0003-2108-885X</orcidid><orcidid>https://orcid.org/0000-0001-9539-6121</orcidid></search><sort><creationdate>20190705</creationdate><title>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</title><author>Cui, Yixian ; Parashar, Smriti ; Zahoor, Muhammad ; Needham, Patrick G. ; Mari, Muriel ; Zhu, Ming ; Chen, Shuliang ; Ho, Hsuan-Chung ; Reggiori, Fulvio ; Farhan, Hesso ; Brodsky, Jeffrey L. ; Ferro-Novick, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-eaf4e2abef04921f16fe8a3a0147ce13ac64ca86940ed0ec5b58d24574da276a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adapters</topic><topic>Adaptor proteins</topic><topic>Agglomeration</topic><topic>Anatomy</topic><topic>Autophagy</topic><topic>Autophagy-Related Proteins - metabolism</topic><topic>Biodegradation</topic><topic>Cargo</topic><topic>Central nervous system</topic><topic>Coated vesicles</topic><topic>Coating</topic><topic>COP-Coated Vesicles - metabolism</topic><topic>Cytosol</topic><topic>Degradation</topic><topic>Depletion</topic><topic>Deprivation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Enzyme inhibitors</topic><topic>Exports</topic><topic>Golgi apparatus</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Homeostasis</topic><topic>Homology</topic><topic>Kinases</topic><topic>Mammalian cells</topic><topic>Mammals</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Networks</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Nutrients</topic><topic>Packaging</topic><topic>Phagocytosis</topic><topic>Phagosomes</topic><topic>Proteasomes</topic><topic>Protein Aggregates</topic><topic>Protein Aggregation, Pathological - metabolism</topic><topic>Protein folding</topic><topic>Protein interaction</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Quality control</topic><topic>Rapamycin</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Regulators</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Secretion</topic><topic>Secretory vesicles</topic><topic>Starvation</topic><topic>TOR protein</topic><topic>Traffic</topic><topic>Traffic control</topic><topic>Transcription</topic><topic>Unfolded Protein Response</topic><topic>Vesicles</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yixian</creatorcontrib><creatorcontrib>Parashar, Smriti</creatorcontrib><creatorcontrib>Zahoor, Muhammad</creatorcontrib><creatorcontrib>Needham, Patrick G.</creatorcontrib><creatorcontrib>Mari, Muriel</creatorcontrib><creatorcontrib>Zhu, Ming</creatorcontrib><creatorcontrib>Chen, Shuliang</creatorcontrib><creatorcontrib>Ho, Hsuan-Chung</creatorcontrib><creatorcontrib>Reggiori, Fulvio</creatorcontrib><creatorcontrib>Farhan, Hesso</creatorcontrib><creatorcontrib>Brodsky, Jeffrey L.</creatorcontrib><creatorcontrib>Ferro-Novick, Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yixian</au><au>Parashar, Smriti</au><au>Zahoor, Muhammad</au><au>Needham, Patrick G.</au><au>Mari, Muriel</au><au>Zhu, Ming</au><au>Chen, Shuliang</au><au>Ho, Hsuan-Chung</au><au>Reggiori, Fulvio</au><au>Farhan, Hesso</au><au>Brodsky, Jeffrey L.</au><au>Ferro-Novick, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-07-05</date><risdate>2019</risdate><volume>365</volume><issue>6448</issue><spage>53</spage><epage>60</epage><pages>53-60</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>31273116</pmid><doi>10.1126/science.aau9263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1674-7411</orcidid><orcidid>https://orcid.org/0000-0002-6984-8486</orcidid><orcidid>https://orcid.org/0000-0001-8714-7352</orcidid><orcidid>https://orcid.org/0000-0002-7175-7604</orcidid><orcidid>https://orcid.org/0000-0001-8260-1421</orcidid><orcidid>https://orcid.org/0000-0002-6348-2612</orcidid><orcidid>https://orcid.org/0000-0003-2108-885X</orcidid><orcidid>https://orcid.org/0000-0001-9539-6121</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-07, Vol.365 (6448), p.53-60
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062386
source MEDLINE; NORA - Norwegian Open Research Archives; American Association for the Advancement of Science
subjects Adapters
Adaptor proteins
Agglomeration
Anatomy
Autophagy
Autophagy-Related Proteins - metabolism
Biodegradation
Cargo
Central nervous system
Coated vesicles
Coating
COP-Coated Vesicles - metabolism
Cytosol
Degradation
Depletion
Deprivation
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress
Enzyme inhibitors
Exports
Golgi apparatus
GTPase-Activating Proteins - metabolism
Homeostasis
Homology
Kinases
Mammalian cells
Mammals
Membrane Proteins - metabolism
Membranes
Networks
Neurodegenerative diseases
Neurological diseases
Nutrients
Packaging
Phagocytosis
Phagosomes
Proteasomes
Protein Aggregates
Protein Aggregation, Pathological - metabolism
Protein folding
Protein interaction
Protein transport
Proteins
Proteolysis
Quality control
Rapamycin
Receptor mechanisms
Receptors
Receptors, Cytoplasmic and Nuclear - metabolism
Regulators
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Secretion
Secretory vesicles
Starvation
TOR protein
Traffic
Traffic control
Transcription
Unfolded Protein Response
Vesicles
Yeast
title A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COPII%20subunit%20acts%20with%20an%20autophagy%20receptor%20to%20target%20endoplasmic%20reticulum%20for%20degradation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Cui,%20Yixian&rft.date=2019-07-05&rft.volume=365&rft.issue=6448&rft.spage=53&rft.epage=60&rft.pages=53-60&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aau9263&rft_dat=%3Cjstor_pubme%3E26745322%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257228791&rft_id=info:pmid/31273116&rft_jstor_id=26745322&rfr_iscdi=true