A COPII subunit acts with an autophagy receptor to target endoplasmic reticulum for degradation

The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-residen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2019-07, Vol.365 (6448), p.53-60
Hauptverfasser: Cui, Yixian, Parashar, Smriti, Zahoor, Muhammad, Needham, Patrick G, Mari, Muriel, Zhu, Ming, Chen, Shuliang, Ho, Hsuan-Chung, Reggiori, Fulvio, Farhan, Hesso, Brodsky, Jeffrey L, Ferro-Novick, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COPII-cargo adaptor complex Lst1-Sec23 selectively sorts proteins into vesicles that bud from the endoplasmic reticulum (ER) and traffic to the Golgi. Improperly folded proteins are prevented from exiting the ER and are degraded. ER-phagy is an autophagic degradation pathway that uses ER-resident receptors. Working in yeast, we found an unexpected role for Lst1-Sec23 in ER-phagy that was independent from its function in secretion. Up-regulation of the stress-inducible ER-phagy receptor Atg40 induced the association of Lst1-Sec23 with Atg40 at distinct ER domains to package ER into autophagosomes. Lst1-mediated ER-phagy played a vital role in maintaining cellular homeostasis by preventing the accumulation of an aggregation-prone protein in the ER. Lst1 function appears to be conserved because its mammalian homolog, SEC24C, was also required for ER-phagy.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aau9263