Rhamnogalacturonan‐I is a determinant of cell–cell adhesion in poplar wood
Summary The molecular basis of cell–cell adhesion in woody tissues is not known. Xylem cells in wood particles of hybrid poplar (Populus tremula × P. alba cv. INRA 717‐1B4) were separated by oxidation of lignin with acidic sodium chlorite when combined with extraction of xylan and rhamnogalacturonan...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2020-04, Vol.18 (4), p.1027-1040 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
The molecular basis of cell–cell adhesion in woody tissues is not known. Xylem cells in wood particles of hybrid poplar (Populus tremula × P. alba cv. INRA 717‐1B4) were separated by oxidation of lignin with acidic sodium chlorite when combined with extraction of xylan and rhamnogalacturonan‐I (RG‐I) using either dilute alkali or a combination of xylanase and RG‐lyase. Acidic chlorite followed by dilute alkali treatment enables cell–cell separation by removing material from the compound middle lamellae between the primary walls. Although lignin is known to contribute to adhesion between wood cells, we found that removing lignin is a necessary but not sufficient condition to effect complete cell–cell separation in poplar lines with various ratios of syringyl:guaiacyl lignin. Transgenic poplar lines expressing an Arabidopsis thaliana gene encoding an RG‐lyase (AtRGIL6) showed enhanced cell–cell separation, increased accessibility of cellulose and xylan to hydrolytic enzyme activities, and increased fragmentation of intact wood particles into small cell clusters and single cells under mechanical stress. Our results indicate a novel function for RG‐I, and also for xylan, as determinants of cell–cell adhesion in poplar wood cell walls. Genetic control of RG‐I content provides a new strategy to increase catalyst accessibility and saccharification yields from woody biomass for biofuels and industrial chemicals. |
---|---|
ISSN: | 1467-7644 1467-7652 |
DOI: | 10.1111/pbi.13271 |