High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm
Graphene has attracted much attention for the realization of high-speed photodetection for silicon photonics over a wide wavelength range. However, the reported fast graphene photodetectors mainly operate in the 1.55 μm wavelength band. In this work, we propose and realize high-performance waveguide...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2020-02, Vol.9 (1), p.29-29, Article 29 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graphene has attracted much attention for the realization of high-speed photodetection for silicon photonics over a wide wavelength range. However, the reported fast graphene photodetectors mainly operate in the 1.55 μm wavelength band. In this work, we propose and realize high-performance waveguide photodetectors based on bolometric/photoconductive effects by introducing an ultrathin wide silicon−graphene hybrid plasmonic waveguide, which enables efficient light absorption in graphene at 1.55 μm and beyond. When operating at 2 μm, the present photodetector has a responsivity of ~70 mA/W and a setup-limited 3 dB bandwidth of >20 GHz. When operating at 1.55 μm, the present photodetector also works very well with a broad 3 dB bandwidth of >40 GHz (setup-limited) and a high responsivity of ~0.4 A/W even with a low bias voltage of −0.3 V. This work paves the way for achieving high-responsivity and high-speed silicon–graphene waveguide photodetection in the near/mid-infrared ranges, which has applications in optical communications, nonlinear photonics, and on-chip sensing.
2 µm photodetectors: silicon−graphene−metal hybrid plasmonics
The use of a silicon−graphene plasmonic waveguide has enabled the realization of fast and sensitive photodetectors that operate at the wavelength of 2 µm. In order to satisfy the demands for the applications in optical communication and optical sensing, there is the need to extend silicon photonics to wavelengths beyond 1.55 µm. However, it is a challenge to create high-performance photodetectors at these wavelengths. Now, Daoxin Dai and coworkers from Zhejiang University and Southeast University in China have proposed and realized a silicon−graphene hybrid plasmonic waveguide photodetector that operates at 2 µm with a responsivity of ~70 mA/W and a 3-dB bandwidth over 20 GHz. In this design, efficient light absorption in graphene is enabled by using a hybrid plasmonic waveguide with a wide thin silicon ridge core and a metal cap that serves as a signal electrode. |
---|---|
ISSN: | 2047-7538 2095-5545 2047-7538 |
DOI: | 10.1038/s41377-020-0263-6 |