Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances

Combining high-throughput screening and machine learning models is a rapidly developed direction for the exploration of novel optoelectronic functional materials. Here, we employ random forests regression (RFR) model to investigate the second harmonic generation (SHG) coefficients of nonlinear optic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.3486-3486, Article 3486
Hauptverfasser: Wang, Rui, Liang, Fei, Lin, Zheshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combining high-throughput screening and machine learning models is a rapidly developed direction for the exploration of novel optoelectronic functional materials. Here, we employ random forests regression (RFR) model to investigate the second harmonic generation (SHG) coefficients of nonlinear optical crystals with distinct diamond-like (DL) structures. 61 DL structures in Inorganic Crystallographic Structure Database (ICSD) are selected, and four distinctive descriptors, including band gap, electronegativity, group volume and bond flexibility, are used to model and predict second-order nonlinearity. It is demonstrated that the RFR model has reached the first-principles calculation accuracy, and gives validated predictions for a variety of representative DL crystals. Additionally, this model shows promising applications to explore new crystal materials of quaternary DL system with superior mid-IR NLO performances. Two new potential NLO crystals, Li 2 CuPS 4 with ultrawide bandgap and Cu 2 CdSnTe 4 with giant SHG response, are identified by this model.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-60410-x