Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading
This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three dif...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.3399-3399, Article 3399 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3399 |
---|---|
container_issue | 1 |
container_start_page | 3399 |
container_title | Scientific reports |
container_volume | 10 |
creator | Youssef, Hamdy M. Alghamdi, Najat A. |
description | This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue. |
doi_str_mv | 10.1038/s41598-020-60342-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365224607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8e66ff8abf2d73973b001cbca41fb2ce590e155cd9bafeed7e71366e458172623</originalsourceid><addsrcrecordid>eNp9kUtv1DAURiMEolXpH2CBLLFhY_A78QYJdXhJUxWpw9pynOsZD0k82AlS_z2emVLaLuqNLd3jc6_9VdVrSt5TwpsPWVCpG0wYwYpwwbB6Vp0yIiRmnLHn984n1XnOW1KWZFpQ_bI64YxoTUh9Wk2XsYM-jGsUPboaAS_CAGMOcbQ9Wm0gDRF6m6fg0GK2Pf6xsRnw0q7R9a8wolXIeQZ0PbdbcBN0aIpoEbyHBOOEVjc7yHvxQVSEy2i70utV9cLbPsP57X5W_fzyeXXxDS-vvn6_-LTETtRiwg0o5X1jW8-6muuat4RQ1zorqG-ZA6kJUCldp1vrAboaasqVAiEbWjPF-Fn18ejdze0AnSszJdubXQqDTTcm2mAeVsawMev4x9REMC73gne3ghR_z5AnM4TsoO_tCHHOhnElGROK1AV9-wjdxjmVXzxQXEsp6J5iR8qlmHMCfzcMJWafqznmakqu5pCrUeXSm_vPuLvyL8UC8COQS2lcQ_rf-wntXyrbrwY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363955417</pqid></control><display><type>article</type><title>Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Youssef, Hamdy M. ; Alghamdi, Najat A.</creator><creatorcontrib>Youssef, Hamdy M. ; Alghamdi, Najat A.</creatorcontrib><description>This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60342-6</identifier><identifier>PMID: 32099007</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/107 ; 631/57/2266 ; 639/166/985 ; Computer Simulation ; Conduction ; Heating ; Humanities and Social Sciences ; Humans ; Laplace transforms ; Mathematical models ; Models, Biological ; multidisciplinary ; Science ; Science (multidisciplinary) ; Skin ; Skin - metabolism ; Skin Temperature - physiology ; Temperature ; Thermal Conductivity ; Tissues ; Traction</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3399-3399, Article 3399</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8e66ff8abf2d73973b001cbca41fb2ce590e155cd9bafeed7e71366e458172623</citedby><cites>FETCH-LOGICAL-c474t-8e66ff8abf2d73973b001cbca41fb2ce590e155cd9bafeed7e71366e458172623</cites><orcidid>0000-0003-4919-2966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042352/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042352/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32099007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Youssef, Hamdy M.</creatorcontrib><creatorcontrib>Alghamdi, Najat A.</creatorcontrib><title>Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.</description><subject>13</subject><subject>13/107</subject><subject>631/57/2266</subject><subject>639/166/985</subject><subject>Computer Simulation</subject><subject>Conduction</subject><subject>Heating</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Laplace transforms</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin</subject><subject>Skin - metabolism</subject><subject>Skin Temperature - physiology</subject><subject>Temperature</subject><subject>Thermal Conductivity</subject><subject>Tissues</subject><subject>Traction</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtv1DAURiMEolXpH2CBLLFhY_A78QYJdXhJUxWpw9pynOsZD0k82AlS_z2emVLaLuqNLd3jc6_9VdVrSt5TwpsPWVCpG0wYwYpwwbB6Vp0yIiRmnLHn984n1XnOW1KWZFpQ_bI64YxoTUh9Wk2XsYM-jGsUPboaAS_CAGMOcbQ9Wm0gDRF6m6fg0GK2Pf6xsRnw0q7R9a8wolXIeQZ0PbdbcBN0aIpoEbyHBOOEVjc7yHvxQVSEy2i70utV9cLbPsP57X5W_fzyeXXxDS-vvn6_-LTETtRiwg0o5X1jW8-6muuat4RQ1zorqG-ZA6kJUCldp1vrAboaasqVAiEbWjPF-Fn18ejdze0AnSszJdubXQqDTTcm2mAeVsawMev4x9REMC73gne3ghR_z5AnM4TsoO_tCHHOhnElGROK1AV9-wjdxjmVXzxQXEsp6J5iR8qlmHMCfzcMJWafqznmakqu5pCrUeXSm_vPuLvyL8UC8COQS2lcQ_rf-wntXyrbrwY</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Youssef, Hamdy M.</creator><creator>Alghamdi, Najat A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4919-2966</orcidid></search><sort><creationdate>20200225</creationdate><title>Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading</title><author>Youssef, Hamdy M. ; Alghamdi, Najat A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8e66ff8abf2d73973b001cbca41fb2ce590e155cd9bafeed7e71366e458172623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13</topic><topic>13/107</topic><topic>631/57/2266</topic><topic>639/166/985</topic><topic>Computer Simulation</topic><topic>Conduction</topic><topic>Heating</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Laplace transforms</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin</topic><topic>Skin - metabolism</topic><topic>Skin Temperature - physiology</topic><topic>Temperature</topic><topic>Thermal Conductivity</topic><topic>Tissues</topic><topic>Traction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Youssef, Hamdy M.</creatorcontrib><creatorcontrib>Alghamdi, Najat A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Youssef, Hamdy M.</au><au>Alghamdi, Najat A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3399</spage><epage>3399</epage><pages>3399-3399</pages><artnum>3399</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32099007</pmid><doi>10.1038/s41598-020-60342-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4919-2966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.3399-3399, Article 3399 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042352 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 13 13/107 631/57/2266 639/166/985 Computer Simulation Conduction Heating Humanities and Social Sciences Humans Laplace transforms Mathematical models Models, Biological multidisciplinary Science Science (multidisciplinary) Skin Skin - metabolism Skin Temperature - physiology Temperature Thermal Conductivity Tissues Traction |
title | Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20One-Dimensional%20Thermoelastic%20Dual-Phase-Lag%20Skin%20Tissue%20Subjected%20to%20Different%20Types%20of%20Thermal%20Loading&rft.jtitle=Scientific%20reports&rft.au=Youssef,%20Hamdy%20M.&rft.date=2020-02-25&rft.volume=10&rft.issue=1&rft.spage=3399&rft.epage=3399&rft.pages=3399-3399&rft.artnum=3399&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60342-6&rft_dat=%3Cproquest_pubme%3E2365224607%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363955417&rft_id=info:pmid/32099007&rfr_iscdi=true |