Modeling of One-Dimensional Thermoelastic Dual-Phase-Lag Skin Tissue Subjected to Different Types of Thermal Loading

This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.3399-3399, Article 3399
Hauptverfasser: Youssef, Hamdy M., Alghamdi, Najat A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work introduces a mathematical model of thermoelastic skin tissue in the context of the dual-phase-lag heat conduction law. One-dimensional skin tissue has been considered with a small thickness and its outer surface traction free. The bounding plane of the skin tissue is subjected to three different types of thermal loading; thermal shock, ramp type heating, and harmonic heating. The inner surface has no temperature increment and traction free. Laplace transform techniques have been used, and its inversions have been calculated by using the Tzuo method. The numerical results have been represented in figures. The thermal shock time parameter, the ramp-type heat parameter, and the angular thermal parameter have significant effects on the temperature increment, the strain, the displacement, and the stress distributions, and they play vital roles in the speed propagation of the thermomechanical waves through the skin tissue.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-60342-6