A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T

A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetricall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.3117-3117, Article 3117
Hauptverfasser: Elabyad, Ibrahim A., Terekhov, Maxim, Lohr, David, Stefanescu, Maria R., Baltes, Steffen, Schreiber, Laura M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm ( in-vivo ) and 0.3 mm × 0.3 mm ( ex-vivo ). The mean g-factor over the heart was 1.26 (R = 6). Static phase B 1 + shimming in a pig body phantom with the optimal phase vectors makes possible to improve the B 1 + homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32–64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-59949-6