Atomic structures and orbital energies of 61,489 crystal-forming organic molecules
Data science and machine learning in materials science require large datasets of technologically relevant molecules or materials. Currently, publicly available molecular datasets with realistic molecular geometries and spectral properties are rare. We here supply a diverse benchmark spectroscopy dat...
Gespeichert in:
Veröffentlicht in: | Scientific data 2020-02, Vol.7 (1), p.58-58, Article 58 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data science and machine learning in materials science require large datasets of technologically relevant molecules or materials. Currently, publicly available molecular datasets with realistic molecular geometries and spectral properties are rare. We here supply a diverse benchmark spectroscopy dataset of 61,489 molecules extracted from organic crystals in the Cambridge Structural Database (CSD), denoted OE62. Molecular equilibrium geometries are reported at the Perdew-Burke-Ernzerhof (PBE) level of density functional theory (DFT) including van der Waals corrections for all 62 k molecules. For these geometries, OE62 supplies total energies and orbital eigenvalues at the PBE and the PBE hybrid (PBE0) functional level of DFT for all 62 k molecules in vacuum as well as at the PBE0 level for a subset of 30,876 molecules in (implicit) water. For 5,239 molecules in vacuum, the dataset provides quasiparticle energies computed with many-body perturbation theory in the
G
0
W
0
approximation with a PBE0 starting point (denoted GW5000 in analogy to the GW100 benchmark set (M. van Setten
et al
. J. Chem. Theory Comput. 12, 5076 (2016))).
Measurement(s)
organic molecule
Technology Type(s)
digital curation • spectroscopy
Factor Type(s)
computational method
Machine-accessible metadata file describing the reported data:
https://doi.org/10.6084/m9.figshare.11689347 |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-020-0385-y |