Effect of Fibre Orientation and Hostile Solutions on Stress Relaxation of Glass/Polyamide Composites

Polyamide creates high-performance composite materials, which are replacing the traditional epoxy composites in several applications. In this context, exposure to hostile environments is expected. On the other hand, due to the viscoelastic nature of the matrix, these composite materials are prone to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2019-12, Vol.12 (1), p.20
Hauptverfasser: Reis, Paulo Nobre Balbis Dos, Amaro, Ana Martins, Neto, Maria Augusta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyamide creates high-performance composite materials, which are replacing the traditional epoxy composites in several applications. In this context, exposure to hostile environments is expected. On the other hand, due to the viscoelastic nature of the matrix, these composite materials are prone to stress relaxation. Therefore, the stress relaxation behaviour of glass/polyamide 6 composites was studied considering different fibre directions, as well as exposure to NaOH and HCl solutions. Stress relaxation tests on the bending mode were carried out, and the stress recorded during the loading time (7200 s). All tests were characterized by a stress decrease over time, but laminates with higher fibre angles were more prone to stress relaxation. However, exposure to hostile solutions promoted more significant decreases, where the highest stress relaxation was achieved for alkaline environments with values that were three times higher for laminates with fibres at 0° and around one and half times higher for 45° fibre alignments when compared with the control samples. Finally, the Kohlrausch-Williams-Watts (KWW) model showed that it can be used to predict stress relaxation time, due to the accuracy that was obtained between the experimental and theoretical results.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym12010020