Lithography-Free Route to Hierarchical Structuring of High-χ Block Copolymers on a Gradient Patterned Surface

A chemically defined patterned surface was created via a combined process of controlled evaporative self-assembly of concentric polymer stripes and the selective surface modification of polymer brush. The former process involved physical adsorption of poly (methyl methacrylate) (PMMA) segments into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-01, Vol.13 (2), p.304
Hauptverfasser: Cho, Ha Ryeong, Choe, Ayoung, Park, Woon Ik, Ko, Hyunhyub, Byun, Myunghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A chemically defined patterned surface was created via a combined process of controlled evaporative self-assembly of concentric polymer stripes and the selective surface modification of polymer brush. The former process involved physical adsorption of poly (methyl methacrylate) (PMMA) segments into silicon oxide surface, thus forming ultrathin PMMA stripes, whereas the latter process was based on the brush treatment of silicon native oxide surface using a hydroxyl-terminated polystyrene (PS-OH). The resulting alternating PMMA- and PS-rich stripes provided energetically favorable regions for self-assembly of high χ polystyrene- -polydimethylsiloxane (PS- -PDMS) in a simple and facile manner, dispensing the need for conventional lithography techniques. Subsequently, deep reactive ion etching and oxygen plasma treatment enabled the transition of the PDMS blocks into oxidized groove-shaped nanostructures.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma13020304