Enhancer Domains Predict Gene Pathogenicity and Inform Gene Discovery in Complex Disease
Non-coding transcriptional regulatory elements are critical for controlling the spatiotemporal expression of genes. Here, we demonstrate that the sizes and number of enhancers linked to a gene reflect its disease pathogenicity. Moreover, genes with redundant enhancer domains are depleted of cis-acti...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2020-02, Vol.106 (2), p.215-233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-coding transcriptional regulatory elements are critical for controlling the spatiotemporal expression of genes. Here, we demonstrate that the sizes and number of enhancers linked to a gene reflect its disease pathogenicity. Moreover, genes with redundant enhancer domains are depleted of cis-acting genetic variants that disrupt gene expression, and they are buffered against the effects of disruptive non-coding mutations. Our results demonstrate that dosage-sensitive genes have evolved a robustness to the disruptive effects of genetic variation by expanding their regulatory domains. This solves a puzzle about why genes associated with human disease are depleted of cis-eQTLs (cis-expression quantitative trait loci), suggesting that this relationship might complicate gene identification in causal genome-wide association studies (GWASs) using eQTL information, and establishes a framework for identifying non-coding regulatory variation with phenotypic consequences. |
---|---|
ISSN: | 0002-9297 1537-6605 1537-6605 |
DOI: | 10.1016/j.ajhg.2020.01.012 |