Apoptotic Inducement of Neuronal Cells by Aluminium Chloride and the Neuroprotective Effect of Eugenol in Wistar Rats
Aluminium is known to accelerate oxidative stress, amyloid beta (Aβ) deposition, and plaque formation in the brain of rats. Objective. The present study is aimed at studying the neuroprotective effects of eugenol following aluminium-induced neurotoxicity on caspase-3, apoptotic proteins (Bcl-2 and B...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aluminium is known to accelerate oxidative stress, amyloid beta (Aβ) deposition, and plaque formation in the brain of rats. Objective. The present study is aimed at studying the neuroprotective effects of eugenol following aluminium-induced neurotoxicity on caspase-3, apoptotic proteins (Bcl-2 and Bax), and oxidative stress markers in Wistar rats such as superoxide dismutase (SOD), glutathione peroxidase (GPx), nitric oxide (NO), and assay oxidative stress to mitochondrial DNA (mtDNA) by measuring the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG). Materials and methods. Twenty (20) adult Wistar rats were randomly divided into four (4) groups with five animals in each group. Route of administration was oral throughout the duration of this study and this study lasted for 21 days. Rats were sacrificed 24 hours after administration of the last dose (i.e., day 22) with 0.8 mg/kg ketamine as an anaesthetic agent. Results. Exposure to AlCl3 resulted in a significant (p |
---|---|
ISSN: | 1942-0900 1942-0994 |
DOI: | 10.1155/2020/8425643 |