Extracellular resistance is sensitive to tissue sodium status; implications for bioimpedance-derived fluid volume parameters in chronic kidney disease
Multifrequency bioimpedance spectroscopy (BIS) is an established method for assessing fluid status in chronic kidney disease (CKD). However, the technique is lacking in predictive value and accuracy. BIS algorithms assume constant tissue resistivity, which may vary with changing tissue ionic sodium...
Gespeichert in:
Veröffentlicht in: | Journal of nephrology 2020-02, Vol.33 (1), p.119-127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multifrequency bioimpedance spectroscopy (BIS) is an established method for assessing fluid status in chronic kidney disease (CKD). However, the technique is lacking in predictive value and accuracy. BIS algorithms assume constant tissue resistivity, which may vary with changing tissue ionic sodium concentration (Na
+
). This may introduce significant inaccuracies to BIS outputs. To investigate this, we used
23
Na magnetic resonance imaging (MRI) to measure Na
+
in muscle and subcutaneous tissues of 10 healthy controls (HC) and 20 patients with CKD 5 (not on dialysis). The extracellular (Re) and intracellular (Ri) resistance, tissue capacitance, extracellular (ECW) and total body water (TBW) were measured using BIS. Tissue water content was assessed using proton density-weighted MRI with fat suppression. BIS-derived volume indices were comparable in the two groups (OH: HC − 0.4 ± 0.9 L vs. CKD 0.5 ± 1.9 L, p = 0.13). However, CKD patients had higher Na
+
(HC 21.2 ± 3.0, CKD 25.3 ± 7.4 mmol/L; p = 0.04) and significantly lower Re (HC 693 ± 93.6, CKD 609 ± 74.3 Ohms; p = 0.01); Ri and capacitance did not vary. Na
+
showed a significant inverse linear relationship to Re (r
s
= − 0.598, p |
---|---|
ISSN: | 1121-8428 1724-6059 |
DOI: | 10.1007/s40620-019-00620-3 |