A three-dimensional momentum-space calculation of three-body bound state in a relativistic Faddeev scheme

In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi momentum vectors without using a partial wave decomposition. The inputs for the three-dimensional Fad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-02, Vol.10 (1), p.1949-1949, Article 1949
Hauptverfasser: Hadizadeh, M. R., Radin, M., Mohseni, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi momentum vectors without using a partial wave decomposition. The inputs for the three-dimensional Faddeev integral equation are the off-shell boost two-body t –matrices, which are calculated directly from the boost two-body interactions by solving the Lippmann-Schwinger equation. The matrix elements of the boost interactions are obtained from the nonrelativistic interactions by solving a nonlinear integral equation using an iterative scheme. The relativistic effects on three-body binding energy are calculated for the Malfliet-Tjon potential. Our calculations show that the relativistic effects lead to a roughly 2% reduction in the three-body binding energy. The contribution of different Faddeev components in the normalization of the relativistic three-body wave function is studied in detail. The accuracy of our numerical solutions is tested by calculation of the expectation value of the three-body mass operator, which shows an excellent agreement with the relativistic energy eigenvalue.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-58577-4