Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition
Echinoderms display a vast array of pigmentation and patterning in larval and adult life stages. This coloration is thought to be important for immune defense and camouflage. However, neither the cellular nor molecular mechanism that regulates this complex coloration in the adult is known. Here we k...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.1973-1973, Article 1973 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Echinoderms display a vast array of pigmentation and patterning in larval and adult life stages. This coloration is thought to be important for immune defense and camouflage. However, neither the cellular nor molecular mechanism that regulates this complex coloration in the adult is known. Here we knocked out three different genes thought to be involved in the pigmentation pathway(s) of larvae and grew the embryos to adulthood. The genes tested were polyketide synthase (PKS), Flavin-dependent monooxygenase family 3 (FMO3) and glial cells missing (GCM). We found that disabling of the PKS gene at fertilization resulted in albinism throughout all life stages and throughout all cells and tissues of this animal, including the immune cells of the coelomocytes. We also learned that FMO3 is an essential modifier of the polyketide. FMO3 activity is essential for larval pigmentation, but in juveniles and adults, loss of FMO3 activity resulted in the animal becoming pastel purple. Linking the LC-MS analysis of this modified pigment to a naturally purple animal suggested a conserved echinochrome profile yielding a pastel purple. We interpret this result as FMO3 modifies the parent polyketide to contribute to the normal brown/green color of the animal, and that in its absence, other biochemical modifications are revealed, perhaps by other members of the large FMO family in this animal. The FMO modularity revealed here may be important in the evolutionary changes between species and for different immune challenges. We also learned that glial cells missing (GCM), a key transcription factor of the endomesoderm gene regulatory network of embryos in the sea urchin, is required for pigmentation throughout the life stages of this sea urchin, but surprisingly, is not essential for larval development, metamorphosis, or maintenance of adulthood. Mosaic knockout of either PKS or GCM revealed spatial lineage commitment in the transition from bilaterality of the larva to a pentaradial body plan of the adult. The cellular lineages identified by pigment presence or absence (wild-type or knock-out lineages, respectively) followed a strict oral/aboral profile. No circumferential segments were seen and instead we observed 10-fold symmetry in the segments of pigment expression. This suggests that the adult lineage commitments in the five outgrowths of the hydropore in the larva are early, complete, fixed, and each bilaterally symmetric. Overall, these results suggest that pigmentation of |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-58584-5 |