Electroacupuncture and Moxibustion Regulate Hippocampus Glia and Mitochondria Activation in DSS-Induced Colitis Mice
Objectives. To study the influence of electroacupuncture (EA) and moxibustion on the hippocampus astrocyte and microglia activation in the ulcerative colitis model and to evaluate the mitochondria activity. Methods. 2.5% dextran sodium sulfate-induced colitis mice were treated by EA or moxibustion....
Gespeichert in:
Veröffentlicht in: | Evidence-based complementary and alternative medicine 2020, Vol.2020 (2020), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives. To study the influence of electroacupuncture (EA) and moxibustion on the hippocampus astrocyte and microglia activation in the ulcerative colitis model and to evaluate the mitochondria activity. Methods. 2.5% dextran sodium sulfate-induced colitis mice were treated by EA or moxibustion. Intestinal pathological structure was observed by hematoxylin and eosin (H&E) staining; the expression of GFAP or S100b (markers for astrocyte), Iba-1 (a marker for microglia), and Mitofilin (a marker for mitochondria) in hippocampus was detected by immunofluorescence staining or western blot. Results. The results demonstrated that both EA and moxibustion could improve the morphology of distal colonic mucosal epithelia in DSS-induced colitis mice. Expression of GFAP in the hippocampus was significantly increased after EA or moxibustion treatment. The effects were further supported by WB results. Meanwhile, expression of mitofilin in the hippocampus CA1 and CA3 regions showed the same trend as that of GFAP. Expression of Iba-1 in the hippocampus showed no significant difference after EA or moxibustion treatment, while the state of microglia changed from resting in control mice to activated state in colitis mice. Conclusion. EA and moxibustion were able to modulate the activation of astrocyte, microglial, and mitochondria in the hippocampus area in the colitis model. |
---|---|
ISSN: | 1741-427X 1741-4288 |
DOI: | 10.1155/2020/2530253 |