Transmissible spongiform encephalopathy in goats: is PrP rapid test sensitivity affected by genotype?

Transmissible spongiform encephalopathy (TSE) surveillance in goats relies on tests initially approved for cattle, subsequently assessed for sheep, and approval extrapolated for use in “small ruminants.” The current EU-approved immunodetection tests employ antibodies against various epitopes of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of veterinary diagnostic investigation 2020-01, Vol.32 (1), p.87-93
Hauptverfasser: Simmons, Marion M., Thorne, Leigh, Ortiz-Pelaez, Angel, Spiropoulos, John, Georgiadou, Soteria, Papasavva-Stylianou, Penelope, Andreoletti, Olivier, Hawkins, Stephen A.C., Meloni, Daniela, Cassar, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transmissible spongiform encephalopathy (TSE) surveillance in goats relies on tests initially approved for cattle, subsequently assessed for sheep, and approval extrapolated for use in “small ruminants.” The current EU-approved immunodetection tests employ antibodies against various epitopes of the prion protein PrPSc, which is encoded by the host PRNP gene. The caprine PRNP gene is polymorphic, mostly at codons different from the ovine PRNP. The EU goat population is much more heterogeneous than the sheep population, with more PRNP-related polymorphisms, and with marked breed-related differences. The ability of the current tests to detect disease-specific PrPSc generated against these different genetic backgrounds is currently assumed, rather than proven. We examined whether common polymorphisms within the goat PRNP gene might have any adverse effect on the relative performance of EU-approved rapid tests. The sample panel comprised goats from the UK, Cyprus, France, and Italy, with either experimental or naturally acquired scrapie at both the preclinical and/or unknown and clinical stages of disease. Test sensitivity was significantly lower and more variable when compared using samples from animals that were preclinical or of unknown status. However, all of the rapid tests included in our study were able to correctly identify all samples from animals in the clinical stages of disease, apart from samples from animals polymorphic for serine or aspartic acid at codon 146, in which the performance of the Bio-Rad tests was profoundly affected. Our data show that some polymorphisms may adversely affect one test and not another, as well as underline the dangers of extrapolating from other species.
ISSN:1040-6387
1943-4936
DOI:10.1177/1040638719896327