Brain-Derived Neurotrophic Factor Has a Transsynaptic Trophic Effect on Neural Activity in an Adult Forebrain Circuit

While hormone-driven plasticity in the adult brain is well studied, the underlying cellular and molecular mechanisms are less well understood. One example of this is seasonal plasticity in the avian brain, where song nuclei exhibit hormonally driven changes in response to changing photoperiod and ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2020-02, Vol.40 (6), p.1226-1231
Hauptverfasser: Miller, Kimberly E, Wood, William E, Brenowitz, Eliot A, Perkel, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While hormone-driven plasticity in the adult brain is well studied, the underlying cellular and molecular mechanisms are less well understood. One example of this is seasonal plasticity in the avian brain, where song nuclei exhibit hormonally driven changes in response to changing photoperiod and circulating sex steroid hormones. Hormone receptor activation in song nucleus HVC (proper name) elicits a robust change in activity in target nucleus RA (robust nucleus of the arcopallium), but the molecular signal responsible for this is unknown. This study addressed whether brain-derived neurotrophic factor (BDNF) mediates a transsynaptic effect from HVC to RA in male Gambel's white-crowned sparrows ( ). hybridization confirmed an increase in BDNF expression in HVC neurons of birds switched to a long-day (LD) photoperiod plus systemically elevated testosterone (T) levels, compared with short-day (SD) conditions. BDNF expression was virtually absent in RA neurons of SD birds, increasing to barely detectable levels in a small subset of cells in LD+T birds. Infusion of BDNF protein adjacent to the RA of SD birds caused an increase in the spontaneous neuron firing rate. Conversely, the infusion of ANA12, a specific antagonist of the tyrosine-related kinase B (TrkB) for BDNF, prevented the increase in RA neuron firing rate in LD+T birds. These results indicate that BDNF is sufficient, and TrkB receptor activation is necessary, for the transsynaptic trophic effect exerted by HVC on RA. The dramatic change in the activity of RA neurons during the breeding season provides a clear example of transsynaptic BDNF effects in the adult brain in a functionally relevant circuit. Sex steroid hormones drive changes in brain circuits in all vertebrates, both within specific neurons and on their synaptic targets. Such changes can lead to profound changes in behavior, but little is known about the precise molecular mechanisms that underlie this process. We addressed this question in a seasonally breeding songbird and found that the trophic effects of one forebrain song nucleus on its target are mediated transsynaptically by the neurotrophin BDNF. This suggests that, in addition to their role in development, neurotrophins have critical roles in adult brain plasticity.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.2375-19.2019