Evaluating Winding Numbers and Counting Complex Roots Through Cauchy Indices in Isabelle/HOL

In complex analysis, the winding number measures the number of times a path (counter-clockwise) winds around a point, while the Cauchy index can approximate how the path winds. We formalise this approximation in the Isabelle theorem prover, and provide a tactic to evaluate winding numbers through Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2020-02, Vol.64 (2), p.331-360
Hauptverfasser: Li, Wenda, Paulson, Lawrence C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In complex analysis, the winding number measures the number of times a path (counter-clockwise) winds around a point, while the Cauchy index can approximate how the path winds. We formalise this approximation in the Isabelle theorem prover, and provide a tactic to evaluate winding numbers through Cauchy indices. By further combining this approximation with the argument principle, we are able to make use of remainder sequences to effectively count the number of complex roots of a polynomial within some domains, such as a rectangular box and a half-plane.
ISSN:0168-7433
1573-0670
DOI:10.1007/s10817-019-09521-3