Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography

Diffuse optical tomography (DOT) is a promising noninvasive imaging modality and is capable of providing functional characteristics of biological tissue by quantifying optical parameters. The DOT image reconstruction is ill-posed and ill-conditioned, due to the highly diffusive nature of light propa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2019-05, Vol.24 (5), p.1-12
Hauptverfasser: Feng, Jinchao, Sun, Qiuwan, Li, Zhe, Sun, Zhonghua, Jia, Kebin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffuse optical tomography (DOT) is a promising noninvasive imaging modality and is capable of providing functional characteristics of biological tissue by quantifying optical parameters. The DOT image reconstruction is ill-posed and ill-conditioned, due to the highly diffusive nature of light propagation in biological tissues and limited boundary measurements. The widely used regularization technique for DOT image reconstruction is Tikhonov regularization, which tends to yield oversmoothed and low-quality images containing severe artifacts. It is necessary to accurately choose a regularization parameter for Tikhonov regularization. To overcome these limitations, we develop a noniterative reconstruction method, whereby optical properties are recovered based on a back-propagation neural network (BPNN). We train the parameters of BPNN before DOT image reconstruction based on a set of training data. DOT image reconstruction is achieved by implementing a single evaluation of the trained network. To demonstrate the performance of the proposed algorithm, we compare with the conventional Tikhonov regularization-based reconstruction method. The experimental results demonstrate that image quality and quantitative accuracy of reconstructed optical properties are significantly improved with the proposed algorithm.
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.24.5.051407