PIPE4: Fast PPI Predictor for Comprehensive Inter- and Cross-Species Interactomes
The need for larger-scale and increasingly complex protein-protein interaction (PPI) prediction tasks demands that state-of-the-art predictors be highly efficient and adapted to inter- and cross-species predictions. Furthermore, the ability to generate comprehensive interactomes has enabled the appr...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-01, Vol.10 (1), p.1390-1390, Article 1390 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The need for larger-scale and increasingly complex protein-protein interaction (PPI) prediction tasks demands that state-of-the-art predictors be highly efficient and adapted to inter- and cross-species predictions. Furthermore, the ability to generate comprehensive interactomes has enabled the appraisal of each PPI in the context of all predictions leading to further improvements in classification performance in the face of extreme class imbalance using the Reciprocal Perspective (RP) framework. We here describe the PIPE4 algorithm. Adaptation of the PIPE3/MP-PIPE sequence preprocessing step led to upwards of 50x speedup and the new Similarity Weighted Score appropriately normalizes for window frequency when applied to any inter- and cross-species prediction schemas. Comprehensive interactomes for three prediction schemas are generated: (1) cross-species predictions, where
Arabidopsis thaliana
is used as a proxy to predict the comprehensive
Glycine max
interactome, (2) inter-species predictions between
Homo sapiens-
HIV1, and (3) a combined schema involving both cross- and inter-species predictions, where both
Arabidopsis thaliana
and
Caenorhabditis elegans
are used as proxy species to predict the interactome between
Glycine max
(the soybean legume) and
Heterodera glycines
(the soybean cyst nematode). Comparing PIPE4 with the state-of-the-art resulted in improved performance, indicative that it should be the method of choice for complex PPI prediction schemas. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-56895-w |