The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans

The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings. The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-09, Vol.10 (42), p.9650-9662
Hauptverfasser: Cardoso Ramos, Felipe, Nottoli, Michele, Cupellini, Lorenzo, Mennucci, Benedetta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9662
container_issue 42
container_start_page 9650
container_title Chemical science (Cambridge)
container_volume 10
creator Cardoso Ramos, Felipe
Nottoli, Michele
Cupellini, Lorenzo
Mennucci, Benedetta
description The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings. The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the excitons in the major fight-harvesting complex, commonly known as LH2. In the present study we report the first systematic investigation of the microscopic origin of the exciton tuning using three complexes, namely the common (high-light) and the low-light forms of LH2 from Rps. acidophila plus a third complex analogous to the PucD complex from Rps. palustris . The study is based on the combination of classical molecular dynamics of each complex in a lipid membrane and excitonic calculations based on a multiscale quantum mechanics/molecular mechanics approach including a polarizable embedding. From the comparative analysis, it comes out that the mechanisms that govern the adaptation of the complex to different light conditions use the different H-bonding environment around the bacteriochlorophyll pigments to dynamically control both internal and inter-pigment degrees of freedom. While the former have a large effect on the site energies, the latter significantly change the electronic couplings, but only the combination of the two effects can fully reproduce the tuning of the final excitons and explain the observed spectroscopic differences.
doi_str_mv 10.1039/c9sc02886b
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988754</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_69887543</originalsourceid><addsrcrecordid>eNqlUU1u1DAUDghEK-iGE7wlLAL5aaYzRGLRdlBZdEMrttGL85IY_BPZzqiz4yhcAQ7SQ3AMVrxkpq26xpJl-_l7348dRa_T5F2a5Kv3YuVFki2Xi_ppdJglx2m8KPLVs_t9lhxER95_S3jkeVpkJy-igzxLiiLPi8Mnf697Am0ViVGhA02iRyO99mBbULLrA2CDQ5DWgDS7Styj25AP0nQgrB4U3dCMH0bHB6hRBHISwdGGUFED9RYQ9KiC9IILLNiQ4vY_P34CzzXLB2eNFODHgSk0mYBuy4qtdRpn9Tfrq89vATcoFdaKPsCXy6tzQINq6-UsHzjK5bkvgR74hB2HSQk0DiV3k8OODWHtrdul8sMExjuC0Duih1glb01wsh4nsIdgZ9TpWa-Au4yXu3rrrAZUCoSynji5l804tbejERMEFdRkRK_RfQeWnVgu4tqahu3s4Y-0Smikvz_d2fua3v66_T37s4ZfybOo5Xi77OXeeCCgGyHD_AQDOtRcclMY_rqO4tn5q-h5i8rT0X59GX38tL4-u4iHsdbUCGZ3qKrBSfa8rSzK6vGNkX3V2U21WC2XJ8Vx_t8E_wCTQgBG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Cardoso Ramos, Felipe ; Nottoli, Michele ; Cupellini, Lorenzo ; Mennucci, Benedetta</creator><creatorcontrib>Cardoso Ramos, Felipe ; Nottoli, Michele ; Cupellini, Lorenzo ; Mennucci, Benedetta</creatorcontrib><description>The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings. The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the excitons in the major fight-harvesting complex, commonly known as LH2. In the present study we report the first systematic investigation of the microscopic origin of the exciton tuning using three complexes, namely the common (high-light) and the low-light forms of LH2 from Rps. acidophila plus a third complex analogous to the PucD complex from Rps. palustris . The study is based on the combination of classical molecular dynamics of each complex in a lipid membrane and excitonic calculations based on a multiscale quantum mechanics/molecular mechanics approach including a polarizable embedding. From the comparative analysis, it comes out that the mechanisms that govern the adaptation of the complex to different light conditions use the different H-bonding environment around the bacteriochlorophyll pigments to dynamically control both internal and inter-pigment degrees of freedom. While the former have a large effect on the site energies, the latter significantly change the electronic couplings, but only the combination of the two effects can fully reproduce the tuning of the final excitons and explain the observed spectroscopic differences.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc02886b</identifier><identifier>PMID: 32055335</identifier><language>eng</language><publisher>Royal Society of Chemistry</publisher><subject>Chemistry</subject><ispartof>Chemical science (Cambridge), 2019-09, Vol.10 (42), p.9650-9662</ispartof><rights>This journal is © The Royal Society of Chemistry 2019 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988754/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Cardoso Ramos, Felipe</creatorcontrib><creatorcontrib>Nottoli, Michele</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><title>The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans</title><title>Chemical science (Cambridge)</title><description>The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings. The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the excitons in the major fight-harvesting complex, commonly known as LH2. In the present study we report the first systematic investigation of the microscopic origin of the exciton tuning using three complexes, namely the common (high-light) and the low-light forms of LH2 from Rps. acidophila plus a third complex analogous to the PucD complex from Rps. palustris . The study is based on the combination of classical molecular dynamics of each complex in a lipid membrane and excitonic calculations based on a multiscale quantum mechanics/molecular mechanics approach including a polarizable embedding. From the comparative analysis, it comes out that the mechanisms that govern the adaptation of the complex to different light conditions use the different H-bonding environment around the bacteriochlorophyll pigments to dynamically control both internal and inter-pigment degrees of freedom. While the former have a large effect on the site energies, the latter significantly change the electronic couplings, but only the combination of the two effects can fully reproduce the tuning of the final excitons and explain the observed spectroscopic differences.</description><subject>Chemistry</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqlUU1u1DAUDghEK-iGE7wlLAL5aaYzRGLRdlBZdEMrttGL85IY_BPZzqiz4yhcAQ7SQ3AMVrxkpq26xpJl-_l7348dRa_T5F2a5Kv3YuVFki2Xi_ppdJglx2m8KPLVs_t9lhxER95_S3jkeVpkJy-igzxLiiLPi8Mnf697Am0ViVGhA02iRyO99mBbULLrA2CDQ5DWgDS7Styj25AP0nQgrB4U3dCMH0bHB6hRBHISwdGGUFED9RYQ9KiC9IILLNiQ4vY_P34CzzXLB2eNFODHgSk0mYBuy4qtdRpn9Tfrq89vATcoFdaKPsCXy6tzQINq6-UsHzjK5bkvgR74hB2HSQk0DiV3k8OODWHtrdul8sMExjuC0Duih1glb01wsh4nsIdgZ9TpWa-Au4yXu3rrrAZUCoSynji5l804tbejERMEFdRkRK_RfQeWnVgu4tqahu3s4Y-0Smikvz_d2fua3v66_T37s4ZfybOo5Xi77OXeeCCgGyHD_AQDOtRcclMY_rqO4tn5q-h5i8rT0X59GX38tL4-u4iHsdbUCGZ3qKrBSfa8rSzK6vGNkX3V2U21WC2XJ8Vx_t8E_wCTQgBG</recordid><startdate>20190927</startdate><enddate>20190927</enddate><creator>Cardoso Ramos, Felipe</creator><creator>Nottoli, Michele</creator><creator>Cupellini, Lorenzo</creator><creator>Mennucci, Benedetta</creator><general>Royal Society of Chemistry</general><scope>5PM</scope></search><sort><creationdate>20190927</creationdate><title>The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans</title><author>Cardoso Ramos, Felipe ; Nottoli, Michele ; Cupellini, Lorenzo ; Mennucci, Benedetta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_69887543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardoso Ramos, Felipe</creatorcontrib><creatorcontrib>Nottoli, Michele</creatorcontrib><creatorcontrib>Cupellini, Lorenzo</creatorcontrib><creatorcontrib>Mennucci, Benedetta</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso Ramos, Felipe</au><au>Nottoli, Michele</au><au>Cupellini, Lorenzo</au><au>Mennucci, Benedetta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2019-09-27</date><risdate>2019</risdate><volume>10</volume><issue>42</issue><spage>9650</spage><epage>9662</epage><pages>9650-9662</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings. The light-harvesting in photosynthetic purple bacteria can be tuned in response to the light conditions during cell growth. One of the used strategies is to change the energy of the excitons in the major fight-harvesting complex, commonly known as LH2. In the present study we report the first systematic investigation of the microscopic origin of the exciton tuning using three complexes, namely the common (high-light) and the low-light forms of LH2 from Rps. acidophila plus a third complex analogous to the PucD complex from Rps. palustris . The study is based on the combination of classical molecular dynamics of each complex in a lipid membrane and excitonic calculations based on a multiscale quantum mechanics/molecular mechanics approach including a polarizable embedding. From the comparative analysis, it comes out that the mechanisms that govern the adaptation of the complex to different light conditions use the different H-bonding environment around the bacteriochlorophyll pigments to dynamically control both internal and inter-pigment degrees of freedom. While the former have a large effect on the site energies, the latter significantly change the electronic couplings, but only the combination of the two effects can fully reproduce the tuning of the final excitons and explain the observed spectroscopic differences.</abstract><pub>Royal Society of Chemistry</pub><pmid>32055335</pmid><doi>10.1039/c9sc02886b</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-09, Vol.10 (42), p.9650-9662
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6988754
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Chemistry
title The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling† †Electronic supplementary information (ESI) available: RMSD analysis of the MDs; electronic coupling map; averaged absorption spectra of the three complexes; contributions to the BChl transitions from all close residues; functional benchmark on the H-bonded residue contribution; distribution of the V1αβ components along the MD; complete excitonic parameters; charge-trans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20molecular%20mechanisms%20of%20light%20adaption%20in%20light-harvesting%20complexes%20of%20purple%20bacteria%20revealed%20by%20a%20multiscale%20modeling%E2%80%A0%20%E2%80%A0Electronic%20supplementary%20information%20(ESI)%20available:%20RMSD%20analysis%20of%20the%20MDs;%20electronic%20coupling%20map;%20averaged%20absorption%20spectra%20of%20the%20three%20complexes;%20contributions%20to%20the%20BChl%20transitions%20from%20all%20close%20residues;%20functional%20benchmark%20on%20the%20H-bonded%20residue%20contribution;%20distribution%20of%20the%20V1%CE%B1%CE%B2%20components%20along%20the%20MD;%20complete%20excitonic%20parameters;%20charge-trans&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Cardoso%20Ramos,%20Felipe&rft.date=2019-09-27&rft.volume=10&rft.issue=42&rft.spage=9650&rft.epage=9662&rft.pages=9650-9662&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc02886b&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_6988754%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32055335&rfr_iscdi=true