Osteocalcin improves outcome after acute ischemic stroke

Osteocalcin is related to energy metabolism, memory and the acute stress response, suggesting a relationship between bone and the brain. The need to explore the effect of osteocalcin on acute ischemic stroke is therefore urgent. Patients with better outcomes had higher serum osteocalcin levels than...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging (Albany, NY.) NY.), 2020-01, Vol.12 (1), p.387-396
Hauptverfasser: Wu, Jiayan, Dou, Yunxiao, Liu, Wangmi, Zhao, Yanxin, Liu, Xueyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Osteocalcin is related to energy metabolism, memory and the acute stress response, suggesting a relationship between bone and the brain. The need to explore the effect of osteocalcin on acute ischemic stroke is therefore urgent. Patients with better outcomes had higher serum osteocalcin levels than those whose NIHSS scores did not improve. Multivariable logistic regression analysis showed acceptable performance (area under the curve = 0.766). The effect of osteocalcin on the promotion of neuron survival was confirmed by Cell Counting Kit-8 experiments. In addition, osteocalcin could decrease proline hydroxylase 1 and inhibit the degradation of gasdermin D. We propose that osteocalcin can improve outcome after acute ischemic stroke in the acute period. By downregulating proline hydroxylase 1, osteocalcin leads glucose metabolism to the pentose phosphate pathway and therefore promotes neuronal survival through inhibiting pyroptosis. Demographic data and laboratory results were obtained from patients with ischemic stroke in the acute period for analysis. A receiver operating characteristic curve was used to assess the discrimination of the prediction model. The potential effect of osteocalcin on cerebral ischemia and osteocalcin mechanism were explored in cultured primary rat cerebral cortical neurons treated with oxygen-glucose deprivation and reoxygenation.
ISSN:1945-4589
1945-4589
DOI:10.18632/aging.102629