Lysophosphatidic acid receptor LPA3 prevents oxidative stress and cellular senescence in Hutchinson–Gilford progeria syndrome
Hutchinson–Gilford progeria syndrome (HGPS) is a rare laminopathy that produces a mutant form of prelamin A, known as Progerin, resulting in premature aging. HGPS cells show morphological abnormalities of the nuclear membrane, reduced cell proliferation rates, accumulation of reactive oxygen species...
Gespeichert in:
Veröffentlicht in: | Aging cell 2020-01, Vol.19 (1), p.e13064-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hutchinson–Gilford progeria syndrome (HGPS) is a rare laminopathy that produces a mutant form of prelamin A, known as Progerin, resulting in premature aging. HGPS cells show morphological abnormalities of the nuclear membrane, reduced cell proliferation rates, accumulation of reactive oxygen species (ROS), and expression of senescence markers. Lysophosphatidic acid (LPA) is a growth factor‐like lipid mediator that regulates various physiological functions via activating multiple LPA G protein‐coupled receptors. Here, we study the roles of LPA and LPA receptors in premature aging. We report that the protein level of LPA3 was highly downregulated through internalization and the lysosomal degradation pathway in Progerin‐transfected HEK293 cells. By treating Progerin HEK293 cells with an LPA3 agonist (OMPT, 1‐Oleoyl‐2‐O‐methyl‐rac‐glycerophosphothionate) and performing shRNA knockdown of the Lpa3r transcript in these cells, we showed that LPA3 activation increased expression levels of antioxidant enzymes, consequently inhibiting ROS accumulation and ameliorating cell senescence. LPA3 was shown to be downregulated in HGPS patient fibroblasts through the lysosomal pathway, and it was shown to be crucial for ameliorating ROS accumulation and cell senescence in fibroblasts. Moreover, in a zebrafish model, LPA3 deficiency was sufficient to cause premature aging phenotypes in multiple organs, as well as a shorter lifespan. Taken together, these findings identify the decline of LPA3 as a key contributor to the premature aging phenotypes of HGPS cells and zebrafish.
In normal cells, activation of LPA3 stabilizes Nrf2 and enhances antioxidants to prevent accumulation of reactive oxygen species (ROS) and cell senescence. In Hutchinson–Gilford progeria syndrome (HGPS) cells, LPA3 is shown to be downregulated through high internalization and subsequent lysosomal degradation. The decline of LPA3 contributes to ROS accumulation and cell senescence of HGPS cells. |
---|---|
ISSN: | 1474-9718 1474-9726 |
DOI: | 10.1111/acel.13064 |