The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil

There is growing concern that Cd in soils can be transferred to plants, resulting in phytotoxicity and threats to human health via the food chain. Biochar has been reported to be a soil amendment capable of reducing the bioavailability of metals in soil by electrostatic interactions, ionic exchange...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.858, Article 858
Hauptverfasser: Liu, Wei, Li, Yulong, Feng, Ya, Qiao, Jianchen, Zhao, Huiwei, Xie, Jixing, Fang, Yanyan, Shen, Shigang, Liang, Shuxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is growing concern that Cd in soils can be transferred to plants, resulting in phytotoxicity and threats to human health via the food chain. Biochar has been reported to be a soil amendment capable of reducing the bioavailability of metals in soil by electrostatic interactions, ionic exchange and the specific binding of metal ions by surface ligands. To determine the effects of Cd contamination and nanobiochar on the growth characteristics of plants, the dynamics of Cd in soil were explored in Petri dish and pot experiments (0%, 0.2%, 0.5% and 1% nanobiochar), respectively. The diversity, distribution and composition of the bacterial community in treated soil were monitored by high-throughput sequencing. The results showed that the germination potential and height and weight of plants were significantly decreased in Cd-treated soil samples ( P  
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-57954-3