Synthesis of a Zinc Oxide Nanoflower Photocatalyst from Sea Buckthorn Fruit for Degradation of Industrial Dyes in Wastewater Treatment

Green synthesis of ZnO nanoparticles has attracted research attention as a sustainable method of avoiding the destructive effect of chemicals. We synthesized a flower-shaped zinc oxide (ZnO) nanoflower (NF) from sea buckthorn fruit (SBT) by co-precipitation and characterized it using X-ray powder di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-11, Vol.9 (12), p.1692
Hauptverfasser: Rupa, Esrat Jahan, Kaliraj, Lalitha, Abid, Suleman, Yang, Deok-Chun, Jung, Seok-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green synthesis of ZnO nanoparticles has attracted research attention as a sustainable method of avoiding the destructive effect of chemicals. We synthesized a flower-shaped zinc oxide (ZnO) nanoflower (NF) from sea buckthorn fruit (SBT) by co-precipitation and characterized it using X-ray powder diffraction (XRD), X-ray photo electronic microscopy (XPS), photoluminescence (PL), field emission transmission electron microscopy (FE-TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The ability of the ZnO/NF to degrade cationic and anionic dyes, including malachite green (MG), Congo red (CR), methylene blue (MB), and eosin Y (EY), under ultraviolet illumination was studied. The photocatalyst degraded approximately 99% of the MG, MB, CR and EY dyes within 70, 70, 80, and 90 min of contact time, respectively, at a dye concentration of 15 mg/L, 5 mg/L, SBT-ZnO/NF degraded 100% of the MG, MB, CR and EY dyes within 23, 25, 28, and 30 min, respectively. The results indicate that SBT-ZnO/NFs as synthesized is an inexpensive, non-toxic, rapid, and reusable photocatalyst that can play an enhanced role in wastewater treatment.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9121692