Assessing the Correlations between Different Traits in Copper-Sensitive and Copper-Resistant Varieties of Jute ( Corchorus capsularis L.)

The current study was conducted to explore the potential for phytoremediation in different varieties of jute grown under toxic concentrations of copper (Cu). For this purpose, a Petri dish experiment was conducted under controlled conditions using four varieties of jute, i.e., HongTieGuXuan, C-3, Gu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2019-11, Vol.8 (12), p.545
Hauptverfasser: Saleem, Muhammad Hamzah, Ali, Shafaqat, Seleiman, Mahmoud F, Rizwan, Muhammad, Rehman, Muzammal, Akram, Nudrat Aisha, Liu, Lijun, Alotaibi, Majed, Al-Ashkar, Ibrahim, Mubushar, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study was conducted to explore the potential for phytoremediation in different varieties of jute grown under toxic concentrations of copper (Cu). For this purpose, a Petri dish experiment was conducted under controlled conditions using four varieties of jute, i.e., HongTieGuXuan, C-3, GuBaChangaJia, and ShangHuoMa, grown in double filter paper under 50 µmol L of artificially spiked copper (Cu) using CuSO .H O. The results of the present study revealed that jute varieties C-3 and HongTieGuXuan were able to survive under high concentrations of Cu without a significant decrease in plant height, plant fresh and dry weights, total chlorophyll content, or seed germination, while varieties GuBaChangaJia and ShangHuoMa exhibited a significant reduction in their growth and biomass. Furthermore, high concentrations of Cu in the medium resulted in lipid peroxidation. This could be due to the oxidative damage induced in the roots and leaves of the jute varieties, which might be a result of by hydrogen peroxide (H O ) and electrolyte leakage. Reactive oxygen species (ROS) generated due to Cu toxicity can be overcome by the increasing activity of antioxidants, and it was also noted that GuBaChangaJia and ShangHuoMa exhibited high Cu stress, while C-3 and HongTieGuXuan showed some resistance to Cu toxicity. Contrastingly, Cu accumulation and uptake was higher in C-3 and HongTieGuXuan, while a little Cu was accumulated in the roots and leaves of GuBaChangaJia and ShangHuoMa. On the basis of these findings, it can be suggested that C-3 and HongTieGuXuan have the potential to cope with Cu stress and can be considered Cu-resistant varieties, while GuBaChangaJia and ShangHuoMa are considered Cu-sensitive varieties. Moreover, C-3 and HongTieGuXuan have the potential to revoke large amounts of Cu, and can be cultivated as phytoremediation tools in Cu-contaminated soil.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants8120545