Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood

The development of eco-friendly adhesives for wood composite products has been a major topic in the field of wood science and product engineering. Although the research on tannin-based and soybean protein-based adhesives has already reached, or at least nears, industrial implementation, we also face...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2019-11, Vol.11 (12), p.1909
Hauptverfasser: Zhao, Zhongyuan, Sun, Shijing, Wu, Di, Zhang, Min, Huang, Caoxing, Umemura, Kenji, Yong, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of eco-friendly adhesives for wood composite products has been a major topic in the field of wood science and product engineering. Although the research on tannin-based and soybean protein-based adhesives has already reached, or at least nears, industrial implementation, we also face a variety of remaining challenges with regards to the push for sustainable adhesives. First, petroleum-derived substances remain a pre-requisite for utilization of said adhesive systems, and also the viscosity of these novel adhesives continues to limit its ability to serve as a drop-in substitute. Within this study, we focus upon the development of an eco-friendly plywood adhesive that does not require any addition of petroleum derived reagents, and the resultant liquid adhesive has both high solid contents as well as a manageably low viscosity at processing temperatures. Specifically, a system based on sucrose and ammonium dihydrogen phosphate (ADP) was synthesized into an adhesive with ~80% solid content and with viscosities ranging from 480-1270 mPa·s. The bonding performance of all adhesive-bound veneer specimens satisfied GB/T 9846-2015 standard at 170 °C hot pressing temperature. To better explain the system's efficiency, in-depth chemical analysis was performed in an effort to understand the chemical makeup of the cured adhesives as well as the components over the time course of curing. Several new structures involving the fixation of nitrogen speak to a novel adhesive molecular network. This research provides a possibility of synthesizing an eco-friendly wood adhesive with a high solid content and a low viscosity by renewable materials, and this novel adhesive system has the potential to be widely utilized in the wood industry.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym11121909