Research of a Radar Imaging Algorithm Based on High Pulse Repetition Random Frequency Hopping Synthetic Wideband Waveform
Aiming at the imaging algorithm of high-pulse-repetition random-frequency-hopping synthetic wideband radar on a supersonic/hypersonic aircraft platform, this study established an echo simulation model of target and clutter, analyzed the special range-Doppler coupling effect and its influence on imag...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2019-12, Vol.19 (24), p.5424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the imaging algorithm of high-pulse-repetition random-frequency-hopping synthetic wideband radar on a supersonic/hypersonic aircraft platform, this study established an echo simulation model of target and clutter, analyzed the special range-Doppler coupling effect and its influence on imaging, and proposes a method of imaging with pipeline-parallel processing based on generalized 2D matched-filtering and Doppler pre-processing. In the method, Doppler-beam-sharpening was advanced to be performed with the pulse compression process in each frame, and the special range-Doppler coupling effect caused by high dynamic motion of platform and random frequency hopping in bandwidth synthesis was well suppressed; several modes of random frequency hopping were designed and the pipeline-parallel image processing algorithm was optimized for each mode. Theoretical analysis and simulation results show that the proposed imaging method can effectively avoid the divergence of 2D range-Doppler images in the range direction, and can meet the requirements of real-time imaging. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19245424 |