Metabolomic networks and pathways associated with feed efficiency and related-traits in Duroc and Landrace pigs

Improving feed efficiency (FE) is a major goal of pig breeding, reducing production costs and providing sustainability to the pig industry. Reliable predictors for FE could assist pig producers. We carried out untargeted blood metabolite profiling in uncastrated males from Danbred Duroc (n = 59) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-01, Vol.10 (1), p.255-255, Article 255
Hauptverfasser: Carmelo, Victor Adriano Okstoft, Banerjee, Priyanka, da Silva Diniz, Wellison Jarles, Kadarmideen, Haja N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improving feed efficiency (FE) is a major goal of pig breeding, reducing production costs and providing sustainability to the pig industry. Reliable predictors for FE could assist pig producers. We carried out untargeted blood metabolite profiling in uncastrated males from Danbred Duroc (n = 59) and Danbred Landrace (n = 50) pigs at the beginning and end of a FE testing phase to identify biomarkers and biological processes underlying FE and related traits. By applying linear modeling and clustering analyses coupled with WGCNA framework, we identified 102 and 73 relevant metabolites in Duroc and Landrace based on two sampling time points. Among them, choline and pyridoxamine were hub metabolites in Duroc in early testing phase, while, acetoacetate, cholesterol sulfate, xanthine, and deoxyuridine were identified in the end of testing. In Landrace, cholesterol sulfate, thiamine, L-methionine, chenodeoxycholate were identified at early testing phase, while, D-glutamate, pyridoxamine, deoxycytidine, and L-2-aminoadipate were found at the end of testing. Validation of these results in larger populations could establish FE prediction using metabolomics biomarkers. We conclude that it is possible to identify a link between blood metabolite profiles and FE. These results could lead to improved nutrient utilization, reduced production costs, and increased FE.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-019-57182-4